Neutral Higgs Bosons, Searches for

CONTENTS:

Mass Limits for Neutral Higgs Bosons in Supersymmetric Models

- Mass Limits for H_1^0 (Higgs Boson) in Supersymmetric Models
- Mass Limits for ${\it A}^0$ (Pseudoscalar Higgs Boson) in Supersymmetric Models

Mass Limits for Neutral Higgs Bosons in Extended Higgs Models

- Mass Limits in General two-Higgs-doublet Models
- Mass Limits for H_2^0 with Vanishing Yukawa Couplings
- Mass Limits for H^0 Decaying to Invisible Final States
- Mass Limits for Light A^0
- Other Mass Limits

Searches for a Higgs Boson with Standard Model Couplings

- Direct Mass Limits for H^0
- Indirect Mass Limits for H^0 from Electroweak Analysis

MASS LIMITS FOR NEUTRAL HIGGS BOSONS IN SUPERSYMMETRIC MODELS

The minimal supersymmetric model has two complex doublets of Higgs bosons. The resulting physical states are two scalars $[H_1^0$ and H_2^0 , where we define $m_{H_1^0} < m_{H_2^0}]$, a pseudoscalar (A^0) , and a charged Higgs pair (H^\pm) . H_1^0 and H_2^0 are also called h and H in the literature. There are two free parameters in the Higgs sector which can be chosen to be m_{A^0} and $\tan\beta = v_2/v_1$, the ratio of vacuum expectation values of the two Higgs doublets. Tree-level Higgs masses are constrained by the model to be $m_{H_1^0} \leq m_Z$, $m_{H_2^0} \geq m_Z$, $m_{A^0} \geq m_{H_1^0}$, and $m_{H^\pm} \geq m_W$. However, as described in the review on "Status of Higgs Boson Physics" in this Volume these relations are violated by radiative corrections.

Unless otherwise noted, the experiments in e^+e^- collisions search for the processes $e^+e^- \to H_1^0 Z^0$ in the channels used for the Standard Model Higgs searches and $e^{ar{+}}e^ightarrow~H^0_1\,A^0$ in the final states $b\,\overline{b}\,b\,\overline{b}$ and $b\overline{b}\tau^+\tau^-$. In $p\overline{p}$ and pp collisions the experiments search for a variety of processes, as explicitly specified for each entry. Limits on the A^0 mass arise from these direct searches, as well as from the relations valid in the minimal supersymmetric model between m_{A^0} and m_{H^0} . As discussed in the review on "Status of Higgs Boson Physics" in this Volume, these relations depend, via potentially large radiative corrections, on the mass of the t quark and on the supersymmetric parameters, in particular those of the stop sector. These indirect limits are weaker for larger t and \widetilde{t} masses. To include the radiative corrections to the Higgs masses, unless otherwise stated, the listed papers use theoretical predictions incorporating two-loop corrections, and the results are given for the $\emph{m}_{h}^{\text{max}}$ benchmark scenario, which gives rise to the most conservative upper bound on the mass of H_1^0 for given values of m_{A0} and $\tan\beta$, see CARENA 99B, CARENA 03, and CARENA 13.

Limits in the low-mass region of H_1^0 , as well as other by now obsolete limits from different techniques, have been removed from this compilation, and can be found in earlier editions of this Review. Unless otherwise stated, the following results assume no invisible H_1^0 or A^0 decays.

The observed signal at about 125 GeV, see section " H^0 ", can be interpreted as one of the neutral Higgs bosons of supersymmetric models.

Mass Limits for H_1^0 (Higgs Boson) in Supersymmetric Models

	CL%	<u>DOCUMENT ID</u>		TECN	
>89.7	CL/0	¹ ABDALLAH			$E_{\rm cm} \le 209 \text{ GeV}$
>92.8	95	² SCHAEL		LEP	$E_{\rm cm} \le 209 \text{ GeV}$
>84.5	95	3,4 ABBIENDI			$E_{\rm cm} \le 209 \text{ GeV}$
>86.0	95	^{3,5} ACHARD	02н		$E_{cm} \stackrel{=}{\leq} 209 \; GeV, \; tan\beta > 0.4$
• • • We do n	ot use	the following data fo	r aver	ages, fit	
		⁶ AAD	14AV	ATLS	$pp \to H_{1,2}^0/A^0 + X,$
		7			$H^0_{1,2}/A^0 ightarrow au au$
		⁷ KHACHATRY.	14M	CMS	$pp \to H_{1,2}^0/A^0 + X,$
		0			$H_{1,2}^0/A^0 \rightarrow \tau \tau$
		⁸ AAD	130	ATLS	$pp \to H_{1,2}^0/A^0 + X,$
		_			$H_{1,2}^0/A^0 ightarrow au^+ au^-$, $\mu^+\mu^-$
		⁹ AAIJ	13T	LHCB	$pp \to H_{1,2}^0/A^0 + X,$
					$H^0_{1,2}/A^0 ightarrow au^+ au^-$
		¹⁰ CHATRCHYAN	13 AG	CMS	$pp \to H_{1,2}^0/A^0 + b + X,$
					$H_{1,2}^0/A^0 \rightarrow b\overline{b}$
		11 AALTONEN	12AG	TEVA	$p\overline{p} \to H_{1,2}^0/A^0 + b + X,$
					$H_{1,2}^0/A^0 \rightarrow b\overline{b}$
		¹² AALTONEN	12X	CDF	$p\overline{p} \rightarrow H_{1,2}^0/A^0 + b + X,$
					$H_{1,2}^0/A^0 \rightarrow b\overline{b}$
		¹³ ABAZOV	12G	D0	$p\overline{p} \rightarrow H_{1,2}^0/A^0 + X$
					$H_{1.2}^0/A^0 \rightarrow \tau^+\tau^-$
		¹⁴ CHATRCHYAN	l 12K	CMS	$pp \to H_{1,2}^0/A^0 + X,$
					$H_{1,2}^{0}/A^{0} \rightarrow \tau^{+}\tau^{-}$
		¹⁵ ABAZOV	11K	D0	$p\overline{p} \rightarrow H_{1.2}^0/A^0 + b + X,$
					$H_{1,2}^0/\overline{A^0} \rightarrow b\overline{b}$
		¹⁶ ABAZOV	11W	D0	$p\overline{p} \rightarrow H_{1,2}^0/A^0 + b + X,$
					$H_{1.2}^{0}/A^{0} \rightarrow \tau^{+}\tau^{-}$
		¹⁷ AALTONEN	09AF	CDF	$p\overline{p} \rightarrow H_{1,2}^0/A^0 + X,$
					$H_{1,2}^{0}/A^{0} \rightarrow \tau^{+}\tau^{-}$
		¹⁸ ABBIENDI	03 G	OPAL	$H_1^0 \xrightarrow{1,2} A^0 A^0$
>89.8	95	^{3,19} HEISTER	02		$E_{cm}^{T} \leq 209 \; GeV, \; tan\beta > 0.5$

- ¹ ABDALLAH 08B give limits in eight *CP*-conserving benchmark scenarios and some *CP*-violating scenarios. See paper for excluded regions for each scenario. Supersedes AB-DALLAH 04.
- ² SCHAEL 06B make a combined analysis of the LEP data. The quoted limit is for the m_h^{max} scenario with $m_t=174.3$ GeV. In the *CP*-violating CPX scenario no lower bound on $m_{H_1^0}$ can be set at 95% CL. See paper for excluded regions in various scenarios. See Figs. 2–6 and Tabs. 14–21 for limits on $\sigma(ZH^0)$ · B($H^0 \to b \, \overline{b}, \, \tau^+ \tau^-$) and $\sigma(H_1^0 H_2^0)$ · B($H_1^0, H_2^0 \to b \, \overline{b}, \tau^+ \tau^-$).
- ³ Search for $e^+e^- \to H_1^0 A^0$ in the final states $b \overline{b} b \overline{b}$ and $b \overline{b} \tau^+ \tau^-$, and $e^+e^- \to H_1^0 Z$. Universal scalar mass of 1 TeV, SU(2) gaugino mass of 200 GeV, and $\mu=-200$ GeV are assumed, and two-loop radiative corrections incorporated. The limits hold for $m_t=175$ GeV, and for the $m_b^{\rm max}$ scenario.
- ⁴ ABBIENDI 04M exclude $0.7 < \tan\beta < 1.9$, assuming $m_t = 174.3$ GeV. Limits for other MSSM benchmark scenarios, as well as for *CP* violating cases, are also given.
- 5 ACHARD 02H also search for the final state $H_1^0 Z \to 2A^0 \, q \, \overline{q}, \, A^0 \to q \, \overline{q}$. In addition, the MSSM parameter set in the "large- μ " and "no-mixing" scenarios are examined. 6 AAD 14AW search for production of a Higgs boson followed by the decay $H_{1,2}^0/A^0 \to 0$
- ⁶ AAD 14AW search for production of a Higgs boson followed by the decay $H_{1,2}^0/A^0 \to \tau^+\tau^-$ in 19.5–20.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. See their Fig. 11 for the limits on cross section times branching ratio and their Figs. 9 and 10 for the excluded region in the MSSM parameter space. For $m_{A^0}=140$ GeV, the region $\tan\beta>5.4$ is excluded at 95% CL in the $m_h^{\rm max}$ scenario.
- 7 KHACHATRYAN 14M search for production of a Higgs boson in gluon fusion and in association with a b quark followed by the decay $H_{1,2}^0/A^0\to \tau^+\tau^-$ in 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. See their Figs. 7 and 8 for one- and two-dimensional limits on cross section times branching ratio and their Figs. 5 and 6 for the excluded region in the MSSM parameter space. For $m_{A^0}=140$ GeV, the region $\tan\beta>3.8$ is excluded at 95% CL in the $m_h^{\rm max}$ scenario.
- ⁸ AAD 130 search for production of a Higgs boson in the decay $H_{1,2}^0/A^0 \to \tau^+\tau^-$ and $\mu^+\mu^-$ with 4.7–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 6 for the excluded region in the MSSM parameter space and their Fig. 7 for the limits on cross section times branching ratio. For $m_{A^0}=110$ –170 GeV, $\tan\beta\gtrsim 10$ is excluded, and for $\tan\beta=50$, m_{A^0} below 470 GeV is excluded at 95% CL in the $m_h^{\rm max}$ scenario.
- ⁹ AAIJ 13T search for production of a Higgs boson in the forward region in the decay $H_{1,2}^0/A^0 \to \tau^+\tau^-$ in 1.0 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 2 for the limits on cross section times branching ratio and the excluded region in the MSSM parameter space.
- ¹⁰ CHATRCHYAN 13AG search for production of a Higgs boson in association with a b quark in the decay $H_{1,2}^0/A^0 \to b\overline{b}$ in 2.7–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 6 for the excluded region in the MSSM parameter space and Fig. 5 for the limits on cross section times branching ratio. For $m_{A^0}=90$ –350 GeV, upper bounds on $\tan\beta$ of 18–42 at 95% CL are obtained in the $m_b^{\rm max}$ scenario with $\mu=+200$ GeV.
- ¹¹ AALTONEN 12AQ combine AALTONEN 12X and ABAZOV 11K. See their Table I and Fig. 1 for the limit on cross section times branching ratio and Fig. 2 for the excluded region in the MSSM parameter space.
- ¹² AALTONEN 12X search for associated production of a Higgs boson and a b quark in the decay $H_{1,2}^0/A^0 \to b\overline{b}$, with 2.6 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. See their

Table III and Fig. 15 for the limit on cross section times branching ratio and Figs. 17, 18 for the excluded region in the MSSM parameter space.

- 13 ABAZOV 12G search for production of a Higgs boson in the decay $H_{1,2}^0/A^0 \to \tau^+\tau^-$ with 7.3 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV and combine with ABAZOV 11W and ABAZOV 11K. See their Figs. 4, 5, and 6 for the excluded region in the MSSM parameter space. For $m_{A^0}=90$ –180 GeV, $\tan\beta\gtrsim30$ is excluded at 95% CL. in the $m_h^{\rm max}$ scenario.
- 14 CHATRCHYAN 12K search for production of a Higgs boson in the decay $H_{1,2}^0/A^0 \to \tau^+\tau^-$ with 4.6 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 3 and Table 4 for the excluded region in the MSSM parameter space. For $m_{A^0}=160$ GeV, the region $\tan\beta > 7.1$ is excluded at 95% CL in the $m_h^{\rm max}$ scenario. Superseded by KHACHATRYAN 14M.
- 15 ABAZOV 11K search for associated production of a Higgs boson and a b quark, followed by the decay $H_{1,2}^0/A^0 \to b\overline{b}$, in 5.2 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. See their Fig. 5/Table 2 for the limit on cross section times branching ratio and Fig. 6 for the excluded region in the MSSM parameter space for $\mu=-200$ GeV.
- 16 ABAZOV 11W search for associated production of a Higgs boson and a b quark, followed by the decay $H_{1,2}^0/A^0\to\,\tau\tau$, in 7.3 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. See their Fig. 2 for the limit on cross section times branching ratio and for the excluded region in the MSSM parameter space.
- ¹⁷ AALTONEN 09AR search for Higgs bosons decaying to $\tau^+\tau^-$ in two doublet models in 1.8 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. See their Fig. 2 for the limit on $\sigma \cdot {\rm B}(H_{1,2}^0/A^0 \to \tau^+\tau^-)$ for different Higgs masses, and see their Fig. 3 for the excluded region in the MSSM parameter space.
- excluded region in the MSSM parameter space. 18 ABBIENDI 03G search for $e^+e^- \rightarrow H_1^0 Z$ followed by $H_1^0 \rightarrow A^0 A^0$, $A^0 \rightarrow c\overline{c}$, gg, or $\tau^+\tau^-$. In the no-mixing scenario, the region $m_{H_1^0}=45$ -85 GeV and $m_{A^0}=2$ -9.5 GeV is excluded at 95% CL.
- 19 HEISTER 02 excludes the range 0.7 <tan β < 2.3. A wider range is excluded with different stop mixing assumptions. Updates BARATE 01C.

Mass Limits for A^0 (Pseudoscalar Higgs Boson) in Supersymmetric Models

		•		,	• •
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>90.4		¹ ABDALLAH	08 B	DLPH	$E_{\rm cm} \le 209 \; {\rm GeV}$
>93.4	95	² SCHAEL	06 B	LEP	$E_{\rm cm} \leq 209 \; {\rm GeV}$
>85.0	95	^{3,4} ABBIENDI	04M	OPAL	$E_{\rm cm} \leq 209 \; {\rm GeV}$
>86.5	95	^{3,5} ACHARD	02н	L3	$E_{\rm cm} \leq 209$ GeV, $\tan \beta > 0.4$
>90.1	95	^{3,6} HEISTER	02	ALEP	$E_{\rm cm} \leq$ 209 GeV, $\tan \beta > 0.5$

• • • We do not use the following data for averages, fits, limits, etc. • • •

HTTP://PDG.LBL.GOV

Page 4

 $^{
m I}$ ABDALLAH 08B give limits in eight $\it CP$ -conserving benchmark scenarios and some $\it CP$ violating scenarios. See paper for excluded regions for each scenario. Supersedes AB-DALLAH 04.

 2 SCHAEL 06B make a combined analysis of the LEP data. The quoted limit is for the $m_h^{
m max}$ scenario with $m_t=174.3$ GeV. In the *CP*-violating CPX scenario no lower bound on m_{H^0} can be set at 95% CL. See paper for excluded regions in various scenarios. See Figs. 2–6 and Tabs. 14–21 for limits on $\sigma(ZH^0)$ · B($H^0 \to b\overline{b}, \tau^+\tau^-$) and $\sigma(H_1^0H_2^0)$ · $B(H_1^0, H_2^0 \rightarrow b\overline{b}, \tau^+\tau^-).$

³ Search for $e^+e^- \rightarrow H_1^0 A^0$ in the final states $b \, \overline{b} \, b \, \overline{b}$ and $b \, \overline{b} \, \tau^+ \tau^-$, and $e^+e^- \rightarrow H_1^0 A^0$ $H_1^0 Z$. Universal scalar mass of 1 TeV, SU(2) gaugino mass of 200 GeV, and $\mu = -200$ GeV are assumed, and two-loop radiative corrections incorporated. The limits hold for m_t =175 GeV, and for the m_h^{max} scenario.

 4 ABBIENDI 04M exclude 0.7 < taneta < 1.9, assuming $m_t =$ 174.3 GeV. Limits for other

MSSM benchmark scenarios, as well as for CP violating cases, are also given. 5 ACHARD 02H also search for the final state $H_1^0 Z \to 2A^0 q \overline{q}$, $A^0 \to q \overline{q}$. In addition, the MSSM parameter set in the "large- μ " and "no-mixing" scenarios are examined.

 6 HEISTER 02 excludes the range 0.7 <taneta < 2.3. A wider range is excluded with different stop mixing assumptions. Updates BARATE 01C.

 7 AAD 14AW search for production of a Higgs boson followed by the decay $H_{1,2}^0/A^0
ightarrow$ $au^+ au^-$ in 19.5–20.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. See their Fig. 11 for the limits on cross section times branching ratio and their Figs. 9 and 10 for the excluded region in the MSSM parameter space. For $m_{A^0}=140$ GeV, the region $\tan \beta>5.4$ is excluded at 95% CL in the $m_h^{\rm max}$ scenario.

- ⁸ KHACHATRYAN 14M search for production of a Higgs boson in gluon fusion and in association with a b quark followed by the decay $H_{1,2}^0/A^0 \to \tau^+\tau^-$ in 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. See their Figs. 7 and 8 for one- and two-dimensional limits on cross section times branching ratio and their Figs. 5 and 6 for the excluded region in the MSSM parameter space. For $m_{A^0}=140$ GeV, the region $\tan\beta>3.8$ is excluded at 95% CL in the $m_h^{\rm max}$ scenario.
- ⁹ AAD 130 search for production of a Higgs boson in the decay $H_{1,2}^0/A^0 \to \tau^+\tau^-$ and $\mu^+\mu^-$ with 4.7–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 6 for the excluded region in the MSSM parameter space and their Fig. 7 for the limits on cross section times branching ratio. For $m_{A^0}=110$ –170 GeV, $\tan\beta\gtrsim 10$ is excluded, and for $\tan\beta=50$, m_{A^0} below 470 GeV is excluded at 95% CL in the $m_h^{\rm max}$ scenario.
- 10 AAIJ 13T search for production of a Higgs boson in the forward region in the decay $H^0_{1,2}/A^0 \to \tau^+\tau^-$ in 1.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 2 for the limits on cross section times branching ratio and the excluded region in the MSSM parameter space.
- ¹¹ CHATRCHYAN 13AG search for production of a Higgs boson in association with a b quark in the decay $H_{1,2}^0/A^0 \to b\overline{b}$ in 2.7–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 6 for the excluded region in the MSSM parameter space and Fig. 5 for the limits on cross section times branching ratio. For $m_{A^0}=90$ –350 GeV, upper bounds on $\tan\beta$ of 18–42 at 95% CL are obtained in the $m_h^{\rm max}$ scenario with $\mu=+200$ GeV.
- 12 AALTONEN 12AQ combine AALTONEN 12X and ABAZOV 11K. See their Table I and Fig. 1 for the limit on cross section times branching ratio and Fig. 2 for the excluded region in the MSSM parameter space.
- ¹³ AALTONEN 12X search for associated production of a Higgs boson and a b quark in the decay $H_{1,2}^0/A^0 \to b\overline{b}$, with 2.6 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. See their Table III and Fig. 15 for the limit on cross section times branching ratio and Figs. 17, 18 for the excluded region in the MSSM parameter space.
- 14 ABAZOV 12G search for production of a Higgs boson in the decay $H_{1,2}^0/A^0 \to \tau^+\tau^-$ with 7.3 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV and combine with ABAZOV 11W and ABAZOV 11K. See their Figs. 4, 5, and 6 for the excluded region in the MSSM parameter space. For $m_{A^0}=90$ –180 GeV, $\tan\beta\gtrsim30$ is excluded at 95% CL. in the $m_h^{\rm max}$ scenario.
- 15 CHATRCHYAN 12K search for production of a Higgs boson in the decay $H_{1,2}^0/A^0 \to \tau^+\tau^-$ with 4.6 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 3 and Table 4 for the excluded region in the MSSM parameter space. For $m_{A^0}=160$ GeV, the region $\tan\beta~>7.1$ is excluded at 95% CL in the $m_h^{\rm max}$ scenario. Superseded by KHACHATRYAN 14M.
- 16 ABAZOV 11K search for associated production of a Higgs boson and a b quark, followed by the decay $H_{1,2}^0/A^0 \to b\overline{b}$, in 5.2 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. See their Fig. 5/Table 2 for the limit on cross section times branching ratio and Fig. 6 for the excluded region in the MSSM parameter space for $\mu=-200$ GeV.
- 17 ABAZOV 11W search for associated production of a Higgs boson and a b quark, followed by the decay $H_{1,2}^0/A^0\to \,\tau\tau$, in 7.3 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. See their Fig. 2 for the limit on cross section times branching ratio and for the excluded region in the MSSM parameter space.
- 18 AALTONEN 09AR search for Higgs bosons decaying to $\tau^+\tau^-$ in two doublet models in 1.8 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. See their Fig. 2 for the limit on

- $\sigma \cdot \mathrm{B}(H_{1,2}^0/A^0 \to \tau^+\tau^-)$ for different Higgs masses, and see their Fig. 3 for the excluded region in the MSSM parameter space.
- excluded region in the MSSM parameter space. $^{19} \, \text{ACOSTA 05Q search for} \, H_{1,2}^0/A^0 \, \text{ production in} \, p\overline{p} \, \text{ collisions at} \, E_{\text{cm}} = 1.8 \, \text{TeV with} \, H_{1,2}^0/A^0 \, \rightarrow \, \tau^+\tau^-. \, \text{ At} \, m_{A^0} = 100 \, \text{GeV, the obtained cross section upper limit is above theoretical expectation.}$
- ²⁰ ABBIENDI 03G search for $e^+e^- \rightarrow H_1^0 Z$ followed by $H_1^0 \rightarrow A^0 A^0$, $A^0 \rightarrow c \overline{c}$, gg, or $\tau^+\tau^-$. In the no-mixing scenario, the region $m_{H_1^0}=45$ -85 GeV and $m_{A^0}=2$ -9.5 GeV is excluded at 95% CL.
- ²¹ AKEROYD 02 examine the possibility of a light A^0 with $\tan \beta < 1$. Electroweak measurements are found to be inconsistent with such a scenario.

MASS LIMITS FOR NEUTRAL HIGGS BOSONS IN EXTENDED HIGGS MODELS

This Section covers models which do not fit into either the Standard Model or its simplest minimal Supersymmetric extension (MSSM), leading to anomalous production rates, or nonstandard final states and branching ratios. In particular, this Section covers limits which may apply to generic two-Higgs-doublet models (2HDM), or to special regions of the MSSM parameter space where decays to invisible particles or to photon pairs are dominant (see the review on "Status of Higgs Boson Physics"). Concerning the mass limits for H^0 and A^0 listed below, see the footnotes or the comment lines for details on the nature of the models to which the limits apply.

The observed signal at about 125 GeV, see section " H^{0} ", can be interpreted as one of the neutral Higgs bosons of an extended Higgs sector.

Mass Limits in General two-Higgs-doublet Models

iviass Limits	ın Generai	two-miggs-doubl	et ivi	oaeis	
VALUE (GeV)	CL%_	DOCUMENT ID		TECN	COMMENT
• • • We do no	ot use the fo	ollowing data for av	erages	, fits, lin	nits, etc. • • •
		¹ AAD			$H_2^0 \rightarrow H^{\pm}W^{\mp} \rightarrow$
		² KHACHATRY	14Q	CMS	$H_2^0 \rightarrow H_2^0 \rightarrow H_2^$
		³ AALTONEN	09AF	CDF	$p\overline{p} \to H_{1,2}^0/A^0 + X,$
					$H_{1.2}^{0}/A^{0} \rightarrow \tau^{+}\tau^{-}$
none 1–55	95	⁴ ABBIENDI	05A	OPAL	H_1^0 , Type II model
>110.6	95	⁵ ABDALLAH			$\mathcal{H}^{ar{O}} ightarrow 2$ jets
		⁶ ABDALLAH	040	DLPH	$Z \rightarrow f\overline{f}H$
		⁷ ABDALLAH	040	DLPH	$e^+e^- ightarrow H^0 Z$, $H^0 A^0$
		⁸ ABBIENDI			$e^+e^- ightarrow b\overline{b}H$
none 1–44	95	⁹ ABBIENDI	01E	OPAL	H_1^0 , Type-II model
> 68.0	95	¹⁰ ABBIENDI	99E	OPAL	=
		¹¹ ABREU	95н	DLPH	$Z \rightarrow H^0 Z^*, H^0 A^0$
		¹² PICH	92	RVUE	Very light Higgs

- 1 AAD 14M search for the decay cascade $H^0_2\to H^\pm\,W^\mp\to H^0\,W^\pm\,W^\mp$, H^0 decaying to $b\,\overline{b}$ in 20.3 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=8$ TeV. See their Table IV for limits in a two-Higgs-doublet model for $m_{H^0_2}=325-1025$ GeV and $m_{H^+}=225-825$ GeV.
- 2 KHACHATRYAN 14Q search for $\overset{^2}{H^0_2} \to H^0 \, H^0$ and $A^0 \to Z \, H^0$ in 19.5 fb $^{-1}$ of $p \, p$ collisions at $E_{\rm cm}=8$ TeV. See their Figs. 4 and 5 for limits on cross section times branching ratio for $m_{H_2,A^0}=260-360$ GeV and their Figs. 7–9 for limits in two-Higgs-doublet models
- doublet models. ³ AALTONEN 09AR search for Higgs bosons decaying to $\tau^+\tau^-$ in two doublet models in 1.8 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. See their Fig. 2 for the limit on $\sigma \cdot {\rm B}(H_{1,2}^0/A^0 \to \tau^+\tau^-)$ for different Higgs masses, and see their Fig. 3 for the excluded region in the MSSM parameter space.
- ⁴ ABBIENDI 05A search for e⁺ e⁻ \rightarrow $H_1^0 A^0$ in general Type-II two-doublet models, with decays H_1^0 , $A^0 \rightarrow q \overline{q}$, g g, $\tau^+ \tau^-$, and $H_1^0 \rightarrow A^0 A^0$.
- ⁵ ABDALLAH 05D search for $e^+e^- \rightarrow H^0Z$ and H^0A^0 with H^0 , A^0 decaying to two jets of any flavor including gg. The limit is for SM H^0Z production cross section with $B(H^0 \rightarrow jj) = 1$.
- ⁶ ABDALLAH 040 search for $Z \to b\overline{b}H^0$, $b\overline{b}A^0$, $\tau^+\tau^-H^0$ and $\tau^+\tau^-A^0$ in the final states 4b, $b\overline{b}\tau^+\tau^-$, and 4τ . See paper for limits on Yukawa couplings.
- ⁷ ABDALLAH 040 search for $e^+e^- \rightarrow H^0Z$ and H^0A^0 , with H^0 , $A^{\bar{0}}$ decaying to $b\bar{b}$, $\tau^+\tau^-$, or $H^0 \rightarrow A^0A^0$ at $E_{\rm cm}=189$ –208 GeV. See paper for limits on couplings.
- ⁸ ABBIENDI 02D search for $Z \to b\overline{b}H_1^0$ and $b\overline{b}A^0$ with $H_1^0/A^0 \to \tau^+\tau^-$, in the range $4 < m_H < 12$ GeV. See their Fig. 8 for limits on the Yukawa coupling.
- ⁹ ABBIENDI 01E search for neutral Higgs bosons in general Type-II two-doublet models, at $E_{\rm cm} \leq$ 189 GeV. In addition to usual final states, the decays H_1^0 , $A^0 \rightarrow q \overline{q}$, g g are searched for. See their Figs. 15,16 for excluded regions.
- ABBIENDI 99E search for $e^+e^- \rightarrow H^0A^0$ and H^0Z at $E_{\rm cm}=183$ GeV. The limit is with $m_H=m_A$ in general two Higgs-doublet models. See their Fig. 18 for the exclusion limit in the m_H-m_A plane. Updates the results of ACKERSTAFF 98S.
- ¹¹ See Fig. 4 of ABREU 95H for the excluded region in the $m_{H^0}-m_{A^0}$ plane for general two-doublet models. For $\tan\beta>1$, the region $m_{H^0}+m_{A^0}\lesssim 87$ GeV, $m_{H^0}<47$ GeV is excluded at 95% CL.
- excluded at 95% CL. 12 PICH 92 analyse H^0 with $m_{H^0} < 2m_{\mu}$ in general two-doublet models. Excluded regions in the space of mass-mixing angles from LEP, beam dump, and π^{\pm} , η rare decays are shown in Figs. 3,4. The considered mass region is not totally excluded.

Mass Limits for H⁰ with Vanishing Yukawa Couplings

These limits assume that H^0 couples to gauge bosons with the same strength as the Standard Model Higgs boson, but has no coupling to quarks and leptons (this is often referred to as "fermiophobic").

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID		TECN	COMMENT		
• • • We do not use the following data for averages, fits, limits, etc. • •							
	95	$^{ m 1}$ AALTONEN	13K	CDF	$H^0 \rightarrow WW^{(*)}$		
none 100-113	95	² AALTONEN			$H^0 ightarrow \gamma \gamma$, WW^* , ZZ^*		
none 100-116	95	³ AALTONEN	13M	TEVA	$H^0 \rightarrow \gamma \gamma$, WW^* , ZZ^*		
		⁴ ABAZOV	13 G	D0	$H^0 \rightarrow WW^{(*)}$		
none 100-113	95	⁵ ABAZOV	13H	D0	$H^0 \rightarrow \gamma \gamma$		
		⁶ ABAZOV	131	D0	$H^0 \rightarrow WW^{(*)}$		
		⁷ ABAZOV	13 J	D0	$H^0 \rightarrow WW^{(*)}, ZZ^{(*)}$		
none 100-114	95	⁸ ABAZOV	13L	D0	$H^0 \rightarrow \gamma \gamma$, WW^* , ZZ^*		
HTTP://PDG	G.LBL.G	OV P	age 8		Created: 10/6/2015 12:32		

```
<sup>9</sup> CHATRCHYAN 13AL CMS
                                                                                   H^0 \rightarrow \gamma \gamma
none 110-147
                         95
                                     <sup>10</sup> AAD
                                                                12N ATLS H^0 \rightarrow \gamma \gamma
                        95
none 110-118,
    119.5-121
                                                               12AN CDF H^0 \rightarrow \gamma \gamma
                                     <sup>11</sup> AALTONEN
                         95
none 100-114
                                    <sup>12</sup> CHATRCHYAN 12AO CMS H^0 \rightarrow \gamma \gamma, WW^{(*)}, ZZ^{(*)}
none 110-194
                        95
                                                                                   H^0 \rightarrow \gamma \gamma
                                     <sup>13</sup> AALTONEN
                                                                09AB CDF
none 70-106
                         95
                                     <sup>14</sup> ABAZOV
                                                                08U D0
                         95
none 70-100
                                                                                   e^+e^- \rightarrow H^0Z.H^0 \rightarrow WW^*
                                     <sup>15</sup> SCHAEL
                                                                       ALEP
>105.8
                         95
                                <sup>16,17</sup> ABDALLAH
                                                               04L DLPH e^+e^- \rightarrow H^0Z, H^0 \rightarrow \gamma\gamma
>104.1
                         95
                                     <sup>18</sup> ACHARD
                                                                                   H^0 \rightarrow WW^*, ZZ^*, \gamma\gamma
                         95
                                                                03C L3
>107
                                <sup>16,19</sup> ABBIENDI
                                                                02F OPAL H^0 \rightarrow \gamma \gamma
                         95
>105.5
                                     <sup>20</sup> ACHARD
                                                                02C L3
                                                                                    H^0 \rightarrow \gamma \gamma
                         95
>105.4
                                     <sup>21</sup> AFFOLDER
                                                                                   p\overline{p} \rightarrow H^0 W/Z, H^0 \rightarrow \gamma \gamma
                                                               01H CDF
                         95
none 60-82
                                                                                   e^+e^- \rightarrow H^0Z, H^0 \rightarrow \gamma\gamma
                                     <sup>22</sup> ACCIARRI
                                                               00s L3
                         95
> 94.9
                                     <sup>23</sup> BARATE
                                                                00L ALEP e^+e^- \rightarrow H^0Z, H^0 \rightarrow \gamma\gamma
                         95
>100.7
                                                               990 OPAL e^+e^- \rightarrow H^0Z, H^0 \rightarrow \gamma\gamma
                                     <sup>24</sup> ABBIENDI
                         95
 > 96.2
                                                               99B D0 p\overline{p} \rightarrow H^0W/Z, H^0 \rightarrow \gamma\gamma
99P DLPH e^+e^- \rightarrow H^0\gamma and/or H^0 \rightarrow
                                     <sup>25</sup> ABBOTT
 > 78.5
                         95
                                     <sup>26</sup> ABREU
```

 $^{^1}$ AALTONEN 13K search for $H^0\to WW^{(*)}$ in 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which corresponds to (1.3–6.6) times the expected cross section is given in the range $m_{H^0}=110$ –200 GeV at 95% CL.

² AALTONEN 13L combine all CDF searches with 9.45–10.0 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV.

³ AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations of $p\bar{p}$ collisions at $E_{\rm CM}=1.96$ TeV.

⁴ABAZOV 13G search for $H^0 \to WW^{(*)}$ in 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which corresponds to (2–9) times the expected cross section is given for $m_{H^0}=100$ –200 GeV at 95% CL.

⁵ ABAZOV 13H search for $H^0 \rightarrow \gamma \gamma$ in 9.6 fb⁻¹ of $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV.

⁶ ABAZOV 13I search for H^0 production in the final state with one lepton and two or more jets plus missing E_T in 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The search is sensitive to WH^0 , ZH^0 and vector-boson fusion Higgs production with $H^0\to WW^{(*)}$. A limit on cross section times branching ratio which corresponds to (8–30) times the expected cross section is given in the range $m_{H^0}=100$ –200 GeV at 95% CL.

⁷ ABAZOV 13J search for H^0 production in the final states $e\,e\,\mu$, $e\,\mu\,\mu$, $\mu\,\tau\,\tau$, and $e^\pm\,\mu^\pm$ in 8.6–9.7 fb $^{-1}$ of $p\,\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The search is sensitive to $W\,H^0$, $Z\,H^0$ production with $H^0\to W\,W^{(*)}$, $Z\,Z^{(*)}$, decaying to leptonic final states. A limit on cross section times branching ratio which corresponds to (2.4–13.0) times the expected cross section is given in the range $m_{H^0}=100$ –200 GeV at 95% CL.

 $^{^8}$ ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV.

⁹ CHATRCHYAN 13AL search for $H^0 \to \gamma \gamma$ in 5.1 fb⁻¹ and 5.3 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ and 8 TeV.

 $^{^{10}}$ AAD 12N search for $H^0\to\gamma\gamma$ with 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV in the mass range $m_{H^0}=110$ –150 GeV.

 $^{^{11}}$ AALTONEN 12AN search for $H^0\to\gamma\gamma$ with 10 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV in the mass range $m_{H^0}=100$ –150 GeV.

¹² CHATRCHYAN 12AO use data from CHATRCHYAN 12G, CHATRCHYAN 12E, CHATRCHYAN 12H, CHATRCHYAN 12I, CHATRCHYAN 12D, and CHATRCHYAN 12C.

- 13 AALTONEN 09AB search for $H^0 \to \gamma \gamma$ in 3.0 fb $^{-1}$ of $p \overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV in the mass range $m_{H^0}=70{-}150$ GeV. Associated $H^0\,W,\,H^0\,Z$ production and $W\,W,\,Z\,Z$ fusion are considered.
- ¹⁴ ABAZOV 08U search for $H^0 \to \gamma \gamma$ in $p \overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV in the mass range $m_{H^0}=70$ –150 GeV. Associated H^0 W, H^0 Z production and W W, ZZ fusion are considered. See their Tab. 1 for the limit on $\sigma \cdot {\rm B}(H^0 \to \gamma \gamma)$, and see their Fig. 3 for the excluded region in the $m_{H^0} \to {\rm B}(H^0 \to \gamma \gamma)$ plane.
- 15 SCHAEL 07 search for Higgs bosons in association with a fermion pair and decaying to WW^* . The limit is from this search and HEISTER 02L for a H^0 with SM production cross section.
- ¹⁶ Search for associated production of a $\gamma\gamma$ resonance with a Z boson, followed by $Z\to q\overline{q},\ \ell^+\ell^-$, or $\nu\overline{\nu}$, at $E_{\rm cm}\leq$ 209 GeV. The limit is for a H^0 with SM production cross section.
- ¹⁷ Updates ABREU 01F.
- 18 ACHARD 03C search for $e^+e^- \rightarrow ZH^0$ followed by $H^0 \rightarrow WW^*$ or ZZ^* at $E_{cm}=$ 200-209 GeV and combine with the ACHARD 02C result. The limit is for a H^0 with SM production cross section. For B($H^0 \rightarrow WW^*$) + B($H^0 \rightarrow ZZ^*$) = 1, m $_{H^0} >$ 108.1 GeV is obtained. See fig. 6 for the limits under different BR assumptions.
- $^{19}\,\mathrm{For}\;\mathrm{B}(\mathrm{H}^0\to~\gamma\gamma){=}1,~m_{\mathrm{H}^0}>{117}~\mathrm{GeV}$ is obtained.
- ²⁰ ACHARD 02C search for associated production of a $\gamma\gamma$ resonance with a Z boson, followed by $Z \to q \overline{q}$, $\ell^+ \ell^-$, or $\nu \overline{\nu}$, at $E_{\rm cm} \le$ 209 GeV. The limit is for a H^0 with SM production cross section. For B($H^0 \to \gamma\gamma$)=1, $m_{H^0} >$ 114 GeV is obtained.
- ²¹ AFFOLDER 01H search for associated production of a $\gamma\gamma$ resonance and a W or Z (tagged by two jets, an isolated lepton, or missing E_T). The limit assumes Standard Model values for the production cross section and for the couplings of the H^0 to W and Z bosons. See their Fig. 11 for limits with B($H^0 \rightarrow \gamma\gamma$) < 1.
- ²² ACCIARRI 00S search for associated production of a $\gamma\gamma$ resonance with a $q\overline{q}$, $\nu\overline{\nu}$, or $\ell^+\ell^-$ pair in e^+e^- collisions at $E_{\rm cm}=$ 189 GeV. The limit is for a H^0 with SM production cross section. For B($H^0\to\gamma\gamma$)=1, $m_{H^0}>$ 98 GeV is obtained. See their Fig. 5 for limits on B($H\to\gamma\gamma$)· $\sigma(e^+e^-\to Hf\overline{f})/\sigma(e^+e^-\to Hf\overline{f})$ (SM).
- ²³ BARATE 00L search for associated production of a $\gamma\gamma$ resonance with a $q\overline{q}$, $\nu\overline{\nu}$, or $\ell^+\ell^-$ pair in e^+e^- collisions at $E_{\rm cm}=$ 88–202 GeV. The limit is for a H^0 with SM production cross section. For B($H^0\to\gamma\gamma$)=1, $m_{H^0}>$ 109 GeV is obtained. See their Fig. 3 for limits on B($H\to\gamma\gamma$)· $\sigma(e^+e^-\to Hf\overline{f})/\sigma(e^+e^-\to Hf\overline{f})$ (SM).
- ²⁴ ABBIENDI 990 search for associated production of a $\gamma\gamma$ resonance with a $q\overline{q}$, $\nu\overline{\nu}$, or $\ell^+\ell^-$ pair in e^+e^- collisions at 189 GeV. The limit is for a H^0 with SM production cross section. See their Fig. 4 for limits on $\sigma(e^+e^-\to H^0Z^0)\times B(H^0\to\gamma\gamma)\times B(X^0\to f\overline{f})$ for various masses. Updates the results of ACKERSTAFF 98Y.
- ²⁵ ABBOTT 99B search for associated production of a $\gamma\gamma$ resonance and a dijet pair. The limit assumes Standard Model values for the production cross section and for the couplings of the H^0 to W and Z bosons. Limits in the range of $\sigma(H^0+Z/W)\cdot B(H^0\to\gamma\gamma)=0.80$ –0.34 pb are obtained in the mass range $m_{H^0}=65$ –150 GeV.
- ²⁶ ABREU 99P search for $e^+e^- \to H^0\gamma$ with $H^0 \to b\overline{b}$ or $\gamma\gamma$, and $e^+e^- \to H^0q\overline{q}$ with $H^0 \to \gamma\gamma$. See their Fig. 4 for limits on $\sigma\times B$. Explicit limits within an effective interaction framework are also given.

Mass Limits for H⁰ Decaying to Invisible Final States

These limits are for a neutral scalar H^0 which predominantly decays to invisible final states. Standard Model values are assumed for the couplings of H^0 to ordinary particles unless otherwise stated.

 VALUE (GeV)
 CL%
 DOCUMENT ID
 TECN
 COMMENT

• • We do not use the	following data for averages,	fits, limits, etc. • •
-----------------------	------------------------------	------------------------

		O	0 , ,	,
		¹ AAD	14BA ATLS	secondary vertex
		² AAD		$pp \rightarrow H^0 ZX$
		³ CHATRCHYAN	N 14B CMS	$pp \rightarrow H^0 ZX, qqH^0 X$
		⁴ AAD	13AG ATLS	secondary vertex
		⁵ AAD	13AT ATLS	electron jets
		⁶ CHATRCHYAN	N 13BJ CMS	
		⁷ AAD	12AQ ATLS	secondary vertex
		⁸ AALTONEN	12AB CDF	secondary vertex
		⁹ AALTONEN	12U CDF	secondary vertex
>108.2	95	¹⁰ ABBIENDI	10 OPAL	
		¹¹ ABBIENDI	07 OPAL	. large width
>112.3	95	¹² ACHARD	05 L3	
>112.1	95	¹² ABDALLAH	04B DLPF	I
>114.1	95	¹² HEISTER	02 ALEP	$E_{ m cm} \leq$ 209 GeV
>106.4	95	¹² BARATE	01C ALEP	$E_{\rm cm}^{\rm m} \leq$ 202 GeV
> 89.2	95	¹³ ACCIARRI	00M L3	

 $^{^1}$ AAD 14BA search for H^0 production in the decay mode $H^0\to X^0X^0$, where X^0 is a long-lived particle which decays to collimated pairs of e^+e^- , $\mu^+\mu^-$, or $\pi^+\pi^-$ plus invisible particles, in 20.3 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=8$ TeV. See their Figs. 15 and 16 for limits on cross section times branching ratio.

 $^{^2}$ AAD 140 search for $pp\to H^0ZX,\,Z\to\ell\ell$, with H^0 decaying to invisible final states in 4.5 fb $^{-1}$ at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. See their Fig. 3 for a limit on the cross section times branching ratio for $m_{H^0}=110$ –400 GeV.

³ CHATRCHYAN 14B search for $pp \to H^0 ZX$, $Z \to \ell \ell$ and $Z \to b \overline{b}$, and also $pp \to qqH^0 X$ with H^0 decaying to invisible final states using data at $E_{\rm cm} = 7$ and 8 TeV. See their Figs. 10, 11 for limits on the cross section times branching ratio for $m_{H^0} = 100$ –400 GeV.

⁴AAD 13AG search for H^0 production in the decay mode $H^0 \to X^0 X^0$, where X^0 is a long-lived particle which decays to $\mu^+ \mu^- X'^0$, in 1.9 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 7 for limits on cross section times branching ratio.

⁵ AAD 13AT search for H^0 production in the decay $H^0 \to X^0 X^0$, where X^0 eventually decays to clusters of collimated e^+e^- pairs, in 2.04 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 3 for limits on cross section times branching ratio.

⁶ CHATRCHYAN 13BJ search for H^0 production in the decay chain $H^0 \to X^0 X^0$, $X^0 \to \mu^+ \mu^- X'^0$ in 5.3 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 2 for limits on cross section times branching ratio.

 $^{^7}$ AAD 12AQ search for H^0 production in the decay mode $H^0 \to X^0 X^0$, where X^0 is a long-lived particle which decays mainly to $b\overline{b}$ in the muon detector, in 1.94 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^0}=120$, 140 GeV, $m_{X^0}=20$, 40 GeV in the $c\tau$ range of 0.5–35 m.

⁸ AALTONEN 12AB search for H^0 production in the decay $H^0 \to X^0 X^0$, where X^0 eventually decays to clusters of collimated $\ell^+\ell^-$ pairs, in 5.1 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. Cross section limits are provided for a benchmark MSSM model incorporating the parameters given in Table VI.

- ⁹ AALTONEN 12U search for H^0 production in the decay mode $H^0 \to X^0 X^0$, where X^0 is a long-lived particle with $c\tau \approx 1$ cm which decays mainly to $b\overline{b}$, in 3.2 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Figs. 9 and 10 for limits on cross section times branching ratio for $m_{H^0} = (130-170)$ GeV, $m_{X^0} = 20$, 40 GeV.
- ¹⁰ ABBIENDI 10 search for $e^+e^- \to H^0Z$ with H^0 decaying invisibly. The limit assumes SM production cross section and B($H^0 \to \text{invisible}$) = 1.
- 11 ABBIENDI 07 search for ${\rm e^+\,e^-} \to {\it H^0}\,{\it Z}$ with ${\it Z} \to {\it q}\,{\rm \overline{q}}$ and ${\it H^0}$ decaying to invisible final states. The ${\it H^0}$ width is varied between 1 GeV and 3 TeV. A limit $\sigma \cdot {\rm B}({\it H^0} \to {\rm invisible})$ < (0.07–0.57) pb (95%CL) is obtained at ${\it E}_{\rm cm} = 206$ GeV for $m_{\it H^0} = 60$ –114 GeV.
- ¹² Search for $e^+e^- \to H^0 Z$ with H^0 decaying invisibly. The limit assumes SM production cross section and B($H^0 \to \text{invisible}$) = 1.
- 13 ACCIARRI 00M search for $e^+e^-\to ZH^0$ with H^0 decaying invisibly at $E_{\rm cm}{=}183{-}189$ GeV. The limit assumes SM production cross section and B($H^0\to$ invisible)=1. See their Fig. 6 for limits for smaller branching ratios.

Mass Limits for Light A⁰

These limits are for a pseudoscalar A^0 in the mass range below $\mathcal{O}(10)$ GeV.

DOCUMENT ID TECN COMMENT VALUE (GeV) CL% ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet¹ LEES 13C BABR $\Upsilon(1S) \rightarrow A^0 \gamma$ ² LEES 13L BABR $\Upsilon(1S) \rightarrow A^0 \gamma$ ³ LEES 13R BABR $\Upsilon(1S) \rightarrow A^0 \gamma$ $A^0 \rightarrow \mu^+ \mu^-$ ⁴ CHATRCHYAN 12V CMS 11P CDF $t \rightarrow bH^+, H^+ \rightarrow W^+A^0$ 11A KTEV $K_L \rightarrow \pi^0\pi^0A^0, A^0 \rightarrow \mu^+\mu^-$ ⁵ AALTONEN ^{6,7} ABOUZAID ⁸ DEL-AMO-SA..11J BABR $\Upsilon(1S) \rightarrow A^0 \gamma$ ⁹ LEES 11H BABR $\Upsilon(2S, 3S) \rightarrow A^0 \gamma$ ¹⁰ ANDREAS **RVUE** 10 BELL $B^0 \rightarrow K^{*0}A^0$, $A^0 \rightarrow \mu^+\mu^ ^{7,11}$ HYUN 10 BELL $B^0 \rightarrow \rho^0 A^0$, $A^0 \rightarrow \mu^+ \mu^-$ 7,12 HYUN 10 09P BABR $\Upsilon(3S) \rightarrow A^0 \gamma$ ¹³ AUBERT ¹⁴ AUBERT 09z BABR $\Upsilon(2S) \rightarrow A^0 \gamma$ 09z BABR $\Upsilon(3S) \rightarrow A^0 \gamma$ ¹⁵ AUBERT K391 $K_L \rightarrow \pi^0 \pi^0 A^0$, $A^0 \rightarrow \gamma \gamma$ 7,16 TUNG ¹⁷ LOVE CLEO $r(1S) \rightarrow A^0 \gamma$ 80 CLEO $\Upsilon(1S) \rightarrow \eta_b \gamma$ HYCP $\Sigma^+ \rightarrow pA_{,}^0 A^0 \rightarrow \mu^+ \mu^-$ ¹⁸ BESSON 07 ¹⁹ PARK 05 $< 1.5 \times 10^{-5}$ CLE2 $\Upsilon(1S) \rightarrow A^0 \gamma$, $m_{\Delta 0} < 5$ GeV ²⁰ BALEST 95 $< 5.6 \times 10^{-5}$ 21 ANTREASYAN 90C CBAL $\varUpsilon(1S)
ightarrow ~{\it A}^0 \, \gamma$, $m_{\it A}^{}_{}_{}_{}_{}_{} < 7.2$ GeV

¹ LEES 13C search for the process $\Upsilon(2\mathsf{S}, 3\mathsf{S}) \to \Upsilon(1\mathsf{S}) \pi^+ \pi^- \to A^0 \gamma \pi^+ \pi^-$ with A^0 decaying to $\mu^+ \mu^-$ and give limits on $\mathsf{B}(\Upsilon(1\mathsf{S}) \to A^0 \gamma) \cdot \mathsf{B}(A^0 \to \mu^+ \mu^-)$ in the range $(0.3\text{-}9.7) \times 10^{-6}$ (90% CL) for $0.212 \le m_{A^0} \le 9.20$ GeV. See their Fig. 5(e) for limits on the $b-A^0$ Yukawa coupling derived by combining this result with AUBERT 09Z. ² LEES 13L search for the process $\Upsilon(2\mathsf{S}) \to \Upsilon(1\mathsf{S}) \pi^+ \pi^- \to A^0 \gamma \pi^+ \pi^-$ with A^0 decaying to gg or $s\overline{s}$ and give limits on $\mathsf{B}(\Upsilon(1\mathsf{S}) \to A^0 \gamma) \cdot \mathsf{B}(A^0 \to gg)$ between 10^{-6} and 10^{-2} (90% CL) for $0.5 \le m_{A^0} \le 9.0$ GeV, and $\mathsf{B}(\Upsilon(1\mathsf{S}) \to A^0 \gamma) \cdot \mathsf{B}(A^0 \to s\overline{s})$ between 10^{-5} and 10^{-3} (90% CL) for $1.5 \le m_{A^0} \le 9.0$ GeV.

- ³ LEES 13R search for the process $\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^- \to A^0\gamma\pi^+\pi^-$ with A^0 decaying to $\tau^+\tau^-$ and give limits on B($\Upsilon(1S) \to A^0\gamma$)·B($A^0 \to \tau^+\tau^-$) in the range 0.9–13 \times 10⁻⁵ (90% CL) for 3.6 $\leq m_{A^0} \leq$ 9.2 GeV. See their Fig. 4 for limits on the $b-A^0$ Yukawa coupling derived by combining this result with AUBERT 09P.
- 4 CHATRCHYAN 12V search for A^0 production in the decay $A^0\to\mu^+\mu^-$ with 1.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. A limit on $\sigma(A^0)\cdot {\rm B}(A^0\to\mu^+\mu^-)$ in the range (1.5–7.5) pb is given for $m_{A^0}=(5.5$ –8.7) and (11.5–14) GeV at 95% CL.
- ⁵ AALTONEN 11P search in 2.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV for the decay chain $t\to bH^+$, $H^+\to W^+A^0$, $A^0\to \tau^+\tau^-$ with m_{A^0} between 4 and 9 GeV. See their Fig. 4 for limits on B($t\to bH^+$) for 90 $< m_{H^+} < 160$ GeV.
- ⁶ ABOUZAID 11A search for the decay chain $K_L \to \pi^0 \pi^0 A^0$, $A^0 \to \mu^+ \mu^-$ and give a limit B($K_L \to \pi^0 \pi^0 A^0$) · B($A^0 \to \mu^+ \mu^-$) < 1.0 × 10⁻¹⁰ at 90% CL for $m_{A^0} = 214.3$ MeV.
- ⁷ The search was motivated by PARK 05.
- ⁸ DEL-AMO-SANCHEZ 11J search for the process $\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^- \to A^0\gamma\pi^+\pi^-$ with A^0 decaying to invisible final states. They give limits on B($\Upsilon(1S) \to A^0\gamma$)·B($A^0 \to \text{invisible}$) in the range (1.9–4.5) \times 10⁻⁶ (90% CL) for $0 \le m_{A^0} \le 8.0$ GeV, and (2.7–37) \times 10⁻⁶ for $8.0 \le m_{A^0} \le 9.2$ GeV.
- ⁹ LEES 11H search for the process $\Upsilon(2\mathsf{S},3\mathsf{S}) \to A^0 \gamma$ with A^0 decaying hadronically and give limits on B($\Upsilon(2\mathsf{S},3\mathsf{S}) \to A^0 \gamma$)·B($A^0 \to \text{hadrons}$) in the range 1×10^{-6} –8 $\times 10^{-5}$ (90% CL) for 0.3 $< m_{A^0} < 7$ GeV. The decay rates for $\Upsilon(2S)$ and $\Upsilon(3S)$ are assumed to be equal up to the phase space factor.
- 10 ANDREAS 10 analyze constraints from rare decays and other processes on a light A^0 with $m_{A^0} < 2m_{\mu}$ and give limits on its coupling to fermions at the level of 10^{-4} times the Standard Model value.
- ¹¹ HYUN 10 search for the decay chain $B^0 \to K^{*0}A^0$, $A^0 \to \mu^+\mu^-$ and give a limit on B($B^0 \to K^{*0}A^0$) · B($A^0 \to \mu^+\mu^-$) in the range (2.26–5.53) × 10⁻⁸ at 90%CL for $m_{\Delta^0} = 212$ –300 MeV. The limit for $m_{\Delta^0} = 214.3$ MeV is 2.26×10^{-8} .
- 12 HYUN 10 search for the decay chain $B^0\to\rho^0\,A^0,\,A^0\to\mu^+\,\mu^-$ and give a limit on B($B^0\to\rho^0\,A^0$) \cdot B($A^0\to\mu^+\,\mu^-$) in the range (1.73–4.51) \times 10 $^{-8}$ at 90%CL for $m_{A^0}=212$ –300 MeV. The limit for $m_{A^0}=214.3$ MeV is 1.73×10^{-8} .
- ¹³ AUBERT 09P search for the process $\Upsilon(3S) \rightarrow A^0 \gamma$ with $A^0 \rightarrow \tau^+ \tau^-$ for 4.03 $< m_{A^0} < 9.52$ and $9.61 < m_{A^0} < 10.10$ GeV, and give limits on B($\Upsilon(3S) \rightarrow A^0 \gamma$)·B($A^0 \rightarrow \tau^+ \tau^-$) in the range (1.5–16) \times 10⁻⁵ (90% CL).
- ¹⁴ AUBERT 09Z search for the process $\Upsilon(2S) \rightarrow A^0 \gamma$ with $A^0 \rightarrow \mu^+ \mu^-$ for 0.212 $< m_{A^0} < 9.3$ GeV and give limits on B($\Upsilon(2S) \rightarrow A^0 \gamma$)·B($A^0 \rightarrow \mu^+ \mu^-$) in the range (0.3–8) \times 10⁻⁶ (90% CL).
- 15 AUBERT 09Z search for the process $\Upsilon(3S)\to A^0\gamma$ with $A^0\to \mu^+\mu^-$ for 0.212 $< m_{A^0}<9.3$ GeV and give limits on B($\Upsilon(3S)\to A^0\gamma$)·B($A^0\to \mu^+\mu^-$) in the range (0.3–5) \times 10 $^{-6}$ (90% CL).
- ¹⁶ TUNG 09 search for the decay chain $K_L \to \pi^0 \pi^0 A^0$, $A^0 \to \gamma \gamma$ and give a limit on B($K_L \to \pi^0 \pi^0 A^0$) · B($A^0 \to \gamma \gamma$) in the range (2.4–10.7) × 10⁻⁷ at 90%CL for $m_{A^0} = 194.3$ –219.3 MeV. The limit for $m_{A^0} = 214.3$ MeV is 2.4×10^{-7} .
- ¹⁷ LOVE 08 search for the process $\Upsilon(1S) \to A^0 \gamma$ with $A^0 \to \mu^+ \mu^-$ (for $m_{A^0} < 2m_{\tau}$) and $A^0 \to \tau^+ \tau^-$. Limits on B($\Upsilon(1S) \to A^0 \gamma$) · B($A^0 \to \ell^+ \ell^-$) in the range 10^{-6} – 10^{-4} (90% CL) are given.

- ¹⁸ BESSON 07 give a limit B($\Upsilon(1S) \rightarrow \eta_b \gamma$) · B($\eta_b \rightarrow \tau^+ \tau^-$) < 0.27% (95% CL), which constrains a possible A^0 exchange contribution to the η_b decay.
- PARK 05 found three candidate events for $\Sigma^+ \to p \, \mu^+ \, \mu^-$ in the HyperCP experiment. Due to a narrow spread in dimuon mass, they hypothesize the events as a possible signal of a new boson. It can be interpreted as a neutral particle with $m_{A^0}=214.3\pm0.5\,\mathrm{MeV}$ and the branching fraction B($\Sigma^+ \to p A^0$)·B($A^0 \to \mu^+ \mu^-$) = $(3.1^{+2.4}_{-1.9}\pm1.5)\times10^{-8}$.
- 20 BALEST 95 two-body limit is for pseudoscalar A^0 . The limit becomes $<10^{-4}$ for $m_{A^0}\,<7.7$ GeV.
- 21 ANTREASYAN 90C assume that A^0 does not decay in the detector.

Other Mass Limits

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT			
ullet $ullet$ We do not	 • • We do not use the following data for averages, fits, limits, etc. • • 							
		$^{ m 1}$ AAD	14 AF	ATLS	$H^0 \rightarrow \gamma \gamma$			
		² AAD	14M	ATLS	$H_2^0 \rightarrow H^{\pm}W^{\mp} \rightarrow$			
					$H^0 \xrightarrow{W^{\pm} W^{\mp}} H^0 \rightarrow b\overline{b}$			
		³ CHATRCHYA	N 14G	CMS				
		⁴ KHACHATRY	14 P	CMS				
		⁵ AALTONEN	13 P	CDF	$H^{\prime 0} \rightarrow H^{\pm} W^{\mp} \rightarrow$			
		⁶ CHATRCHYA	N 13 BJ	CMS	$H^0 _{A^0} A^0$			
		⁷ AALTONEN		CDF				
		⁸ ABBIENDI	10	OPAL	$H^0 \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_2^0$			
		⁹ SCHAEL	10	ALEP	$H^0 \rightarrow A^{\dagger}A^{\dagger}$			
		¹⁰ ABAZOV	09V	D0	$H^0 \rightarrow A^0 A^0$			
none 3–63	95	¹¹ ABBIENDI		OPAL				
>104	95	12 ABBIENDI	04K	OPAL	_			
		¹³ ABDALLAH	04	DLPH	1 0			
>110.3	95	14 ACHARD	04 B		$H^0 \rightarrow 2$ jets			
		15 ACHARD		L3				
		¹⁶ ABBIENDI		OPAL	$e^+e^- \rightarrow H^0Z, H^0 \rightarrow any$			
		¹⁷ ABBIENDI	03 G	OPAL	$H_1^0 \rightarrow A^0 A^0$			
>105.4	95	^{18,19} HEISTER	02L	ALEP	$H_1^0 o \gamma \gamma$			
>109.1	95	²⁰ HEISTER	02M	ALEP	,			
none 12-56	95	²¹ ABBIENDI	01E	OPAL				
		²² ACCIARRI	00 R	L3	${ m e^+e^-} ightarrow~H^0\gamma$ and/or			
		00			$H^0 \rightarrow \gamma \gamma$			
		²³ ACCIARRI	00 R		$e^+e^- \rightarrow e^+e^-H^0$			
		²⁴ GONZALEZ-C			Anomalous coupling			
		²⁵ KRAWCZYK	97	RVUE	$(g-2)_{\mu}$			
		²⁶ ALEXANDER	96H	OPAL	$Z \rightarrow H^0 \gamma$			

 $^{^1}$ AAD 14AP search for a second H^0 state decaying to $\gamma\gamma$ in addition to the state at about 125 GeV in 20.3 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=8$ TeV. See their Fig. 4 for limits on cross section times branching ratio for $m_{H^0}=65\text{--}600$ GeV. 2 AAD 14M search for the decay cascade $H^0_2\to~H^\pm\,W^\mp\to~H^0\,W^\pm\,W^\mp$, H^0 decaying

² AAD 14M search for the decay cascade $H_2^{0} \rightarrow H^{\pm}W^{\mp} \rightarrow H^0W^{\pm}W^{\mp}$, H^0 decaying to $b\overline{b}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. See their Table III for limits on cross section times branching ratio for $m_{H_2^0}=325-1025$ GeV and $m_{H^+}=225-925$ GeV.

- ³ CHATRCHYAN 14G search for a second H^0 state decaying to $WW^{(*)}$ in addition to the observed signal at about 125 GeV using 4.9 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 19.4 fb⁻¹ at $E_{\rm cm}=8$ TeV. See their Fig. 21 (right) for cross section limits in the mass range 110–600 GeV.
- 4 KHACHATRYAN 14P search for a second H^0 state decaying to $\gamma\gamma$ in addition to the observed signal at about 125 GeV using 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. See their Figs. 27 and 28 for cross section limits in the mass range 110–150 GeV.
- ⁵ AALTONEN 13P search for production of a heavy Higgs boson H'^0 that decays into a charged Higgs boson H^\pm and a lighter Higgs boson H^0 via the decay chain $H'^0 \to H^\pm W^\mp$, $H^\pm \to W^\pm H^0$, $H^0 \to b \overline{b}$ in the final state $\ell \nu$ plus 4 jets in 8.7 fb⁻¹ of $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Fig. 4 for limits on cross section times branching ratio in the $m_{H^\pm} m_{H'^0}$ plane for $m_{H^0} = 126$ GeV.
- ⁶ CHATRCHYAN 13BJ search for H^0 production in the decay chain $H^0 \to A^0 A^0$, $A^0 \to \mu^+ \mu^-$ in 5.3 fb⁻¹ of $p\,p$ collisions at $E_{\rm cm}=7$ TeV. See their Fig. 2 for limits on cross section times branching ratio.
- ⁷ AALTONEN 11P search in 2.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV for the decay chain $t\to bH^+$, $H^+\to W^+A^0$, $A^0\to \tau^+\tau^-$ with m_{A^0} between 4 and 9 GeV. See their Fig. 4 for limits on B($t\to bH^+$) for 90 $< m_{H^+} < 160$ GeV.
- ⁸ ABBIENDI 10 search for $e^+e^- \to ZH^0$ with the decay chain $H^0 \to \widetilde{\chi}_1^0 \widetilde{\chi}_2^0$, $\widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 + (\gamma \text{ or } Z^*)$, when $\widetilde{\chi}_1^0$ and $\widetilde{\chi}_2^0$ are nearly degenerate. For a mass difference of 2 (4) GeV, a lower limit on m_{H^0} of 108.4 (107.0) GeV (95% CL) is obtained for SM ZH^0 cross section and B($H^0 \to \widetilde{\chi}_1^0 \widetilde{\chi}_2^0$) = 1.
- 9 SCHAEL 10 search for the process $e^+\,e^-\to H^0\,Z$ followed by the decay chain $H^0\to A^0\,A^0\to \tau^+\tau^-\tau^+\tau^-$ with $Z\to \ell^+\ell^-$, $\nu\overline{\nu}$ at $E_{\rm cm}=183$ –209 GeV. For a $H^0\,Z\,Z$ coupling equal to the SM value, B($H^0\to A^0\,A^0$) = B($A^0\to \tau^+\tau^-$) = 1, and $m_{A^0}=4$ –10 GeV, m_{H^0} up to 107 GeV is excluded at 95% CL.
- 10 ABAZOV 09V search for H^0 production followed by the decay chain $H^0\to A^0A^0\to \mu^+\mu^-\mu^+\mu^-$ or $\mu^+\mu^-\tau^+\tau^-$ in 4.2 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. See their Fig. 3 for limits on $\sigma(H^0)\cdot {\rm B}(H^0\to A^0A^0)$ for $m_{A^0}=3.6$ –19 GeV.
- ¹¹ ABBIENDI 05A search for $e^+e^- \to H_1^0\,A^0$ in general Type-II two-doublet models, with decays $H_1^0,\,A^0 \to q\,\overline{q},\,g\,g,\,\tau^+\tau^-$, and $H_1^0 \to A^0\,A^0$.
- ¹² ABBIENDI 04K search for $e^+e^- \rightarrow H^0Z$ with H^0 decaying to two jets of any flavor including gg. The limit is for SM production cross section with $B(H^0 \rightarrow jj) = 1$.
- 13 ABDALLAH 04 consider the full combined LEP and LEP2 datasets to set limits on the Higgs coupling to W or Z bosons, assuming SM decays of the Higgs. Results in Fig. 26.
- ¹⁴ ACHARD 04B search for $e^+e^- \to H^0 Z$ with H^0 decaying to $b\overline{b}$, $c\overline{c}$, or gg. The limit is for SM production cross section with $B(H^0 \to jj) = 1$.
- ¹⁵ ACHARD 04F search for H^0 with anomalous coupling to gauge boson pairs in the processes $e^+e^- \to H^0\gamma$, $e^+e^-H^0$, H^0Z with decays $H^0 \to f\overline{f}$, $\gamma\gamma$, $Z\gamma$, and W^*W at $E_{\rm cm}=189$ –209 GeV. See paper for limits.
- ¹⁶ ABBIENDI 03F search for $H^0 \to \text{anything in } e^+e^- \to H^0 Z$, using the recoil mass spectrum of $Z \to e^+e^-$ or $\mu^+\mu^-$. In addition, it searched for $Z \to \nu \overline{\nu}$ and $H^0 \to e^+e^-$ or photons. Scenarios with large width or continuum H^0 mass distribution are considered. See their Figs. 11–14 for the results.
- 17 ABBIENDI 03G search for $e^+\,e^-\to H_1^0\,Z$ followed by $H_1^0\to A^0\,A^0,\,A^0\to c\,\overline{c},\,g\,g,$ or $\tau^+\,\tau^-$ in the region $m_{H_1^0}=$ 45-86 GeV and $m_{A^0}=$ 2-11 GeV. See their Fig. 7 for the limits.

- ¹⁸ Search for associated production of a $\gamma\gamma$ resonance with a Z boson, followed by $Z\to q\overline{q}$, $\ell^+\ell^-$, or $\nu\overline{\nu}$, at $E_{\rm cm}\leq$ 209 GeV. The limit is for a H^0 with SM production cross section and B($H^0\to f\overline{f}$)=0 for all fermions f.
- $^{19}\,\mathrm{For}\;\mathrm{B}(H^0\to~\gamma\gamma){=}1,~m_{H^0}>113.1~\mathrm{GeV}$ is obtained.
- ²⁰ HEISTER 02M search for $e^+e^- \rightarrow H^0 Z$, assuming that H^0 decays to $q \overline{q}$, g g, or $\tau^+\tau^-$ only. The limit assumes SM production cross section.
- ²¹ ABBIENDI 01E search for neutral Higgs bosons in general Type-II two-doublet models, at $E_{\rm cm} \leq$ 189 GeV. In addition to usual final states, the decays H_1^0 , $A^0 \to q \overline{q}$, g g are searched for. See their Figs. 15,16 for excluded regions.
- ²² ACCIARRI 00R search for $e^+e^- \to H^0\gamma$ with $H^0 \to b\overline{b}$, $Z\gamma$, or $\gamma\gamma$. See their Fig. 3 for limits on $\sigma \cdot B$. Explicit limits within an effective interaction framework are also given, for which the Standard Model Higgs search results are used in addition.
- ²³ ACCIARRI 00R search for the two-photon type processes $e^+e^- \rightarrow e^+e^-H^0$ with $H^0 \rightarrow b\overline{b}$ or $\gamma\gamma$. See their Fig. 4 for limits on $\Gamma(H^0 \rightarrow \gamma\gamma)\cdot B(H^0 \rightarrow \gamma\gamma)$ or $b\overline{b}$ for m_{H^0} =70–170 GeV.
- ²⁴ GONZALEZ-GARCIA 98B use DØ limit for $\gamma\gamma$ events with missing E_T in $p\overline{p}$ collisions (ABBOTT 98) to constrain possible ZH or WH production followed by unconventional $H\to\gamma\gamma$ decay which is induced by higher-dimensional operators. See their Figs. 1 and 2 for limits on the anomalous couplings.
- 25 KRAWCZYK 97 analyse the muon anomalous magnetic moment in a two-doublet Higgs model (with type II Yukawa couplings) assuming no H_1^0 ZZ coupling and obtain $m_{H_1^0} \gtrsim$
 - 5 GeV or $m_{A^0} \gtrsim$ 5 GeV for $\tan \beta >$ 50. Other Higgs bosons are assumed to be much heavier
- ²⁶ ALEXANDER 96H give B($Z \to H^0 \gamma$)×B($H^0 \to q \overline{q}$) < 1–4 × 10⁻⁵ (95%CL) and B($Z \to H^0 \gamma$)×B($H^0 \to b \overline{b}$) < 0.7–2 × 10⁻⁵ (95%CL) in the range 20 < m_{H^0} <80 GeV.

SEARCHES FOR A HIGGS BOSON WITH STANDARD MODEL COUPLINGS

These listings are based on experimental searches for a scalar boson whose couplings to W, Z and fermions are precisely those of the Higgs boson predicted by the three-generation Standard Model with the minimal Higgs sector.

For a review and a bibliography, see the review on "Status of Higgs Boson Physics."

Direct Mass Limits for H⁰

The mass limits shown below apply to a Higgs boson H^0 with Standard Model couplings whose mass is a priori unknown. These mass limits are compatible with and independent of the observed signal at about 125 GeV. In particular, the symbol H^0 employed below does not in general refer to the observed signal at about 125 GeV.

The cross section times branching ratio limits quoted in the footnotes below are typically given relative to those of a Standard Model Higgs boson of the relevant mass. These limits can be reinterpreted in terms of more general models (e.g. extended Higgs sectors) in which the Higgs couplings to W, Z and fermions are re-scaled from their Standard Model values.

All data that have been superseded by newer results are marked as "not used" or have been removed from this compilation, and are documented in previous editions of this Review of Particle Physics.

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
> 122 and none	128-710	(CL = 95%)			
none 90–102, 149–172	95	$^{ m 1}$ AALTONEN	13L	CDF	$pp \rightarrow H^0X$, combined
none 90–109, 149–182	95	² AALTONEN	13M	TEVA	Tevatron combined
none 90–101, 157–178	95	³ ABAZOV	13L	D0	$p\overline{p} \rightarrow H^0X$, combined
none 145–710	95	⁴ CHATRCHYAN	13Q	CMS	$pp \rightarrow H^0 X$ combined
none 110-121.5, 128-145	95	⁵ CHATRCHYAN			$pp \rightarrow H^0 X$ combined
>114.1	95	⁶ ABDALLAH	04	DLPH	$e^+e^- \rightarrow H^0Z$
>112.7	95	⁶ ABBIENDI	03 B	OPAL	$e^+e^- \rightarrow H^0Z$
>114.4	95	6,7 HEISTER	03 D	LEP	$e^+e^- \rightarrow H^0Z$
>111.5	95		02	ALEP	$e^+e^- \rightarrow H^0Z$
>112.0	95	_	01C		$e^+e^- \rightarrow H^0Z$
		following data for a			
• • • vve do not	use the	-			
		⁹ AAD		ATLS	$pp \rightarrow H^0W/ZX, H^0 \rightarrow b\overline{b}$
				ATLS	$pp \rightarrow H^0_{\underline{a}}X, H^0_{\underline{a}} \rightarrow \mu\mu$
				ATLS	$pp \rightarrow H^0 X, H^0 \rightarrow Z\gamma$
none 114.5–119, 129.5–832	95	¹² CHATRCHYAN			$pp \rightarrow H^0 X, H^0 \rightarrow 4\ell$
		¹³ CHATRCHYAN	14 AI	CMS	$pp \rightarrow H^0W/ZX, H^0 \rightarrow b\overline{b}$
none 127-600	95	¹⁴ CHATRCHYAN	14 G	CMS	$pp \rightarrow H^0X, H^0 \rightarrow WW^{(*)}$
		¹⁵ AALTONEN	13 B	CDF	$p\overline{p} \rightarrow H^0W/ZX, H^0 \rightarrow b\overline{b}$
		4.0		CDF	$p\overline{p} \rightarrow H^0 X, H^0 \rightarrow b\overline{b}$
none 149-172	95	¹⁷ AALTONEN		CDF	$p\overline{p} \rightarrow H^0 X, H^0 \rightarrow WW^{(*)}$
Hone 149 172	93	18 ABAZOV		D0	$p\overline{p} \rightarrow H^0 X, H \rightarrow WW$
		¹⁹ ABAZOV		-	$p\overline{p} \rightarrow H^0 X, 4\ell$ $p\overline{p} \rightarrow H^0 X, \ell \tau j j$
			13F	D0	
none 159–176	95	²⁰ ABAZOV		D0	$p\overline{p} \rightarrow H_0^0 X, H_0^0 \rightarrow WW^{(*)}$
		²¹ ABAZOV	13H	D0	$p\overline{p} \rightarrow H_0^0 X, H^0 \rightarrow \gamma \gamma$
		²² ABAZOV	131	D0	$p\overline{p} \rightarrow H^0_{\hat{Q}}X, \ell\nu jj$
		²³ ABAZOV	13 J	D0	$p\overline{p} \rightarrow H^0X$, leptonic
			13K		$p\overline{p} \rightarrow H^0 Z X$
		²⁵ CHATRCHYAN	13AL	CMS	$pp \rightarrow H^0 X, H^0 \rightarrow \tau \tau,$
		²⁶ CHATRCHYAN	13₽⊬	CMS	$WW^{(*)}, ZZ^{(*)}$ $pp \rightarrow H^0X, H^0 \rightarrow Z\gamma$
		²⁷ CHATRCHYAN			$pp \rightarrow H^0 t \overline{t} X$
112 100	0.5	²⁸ CHATRCHYAN			$pp \rightarrow H^0 X, H^0 \rightarrow \gamma \gamma$
none 113–122, 128–133, 138–149	95	- CHATRCHYAN	13Y	CIVIS	$pp \rightarrow H^{\circ}X, H^{\circ} \rightarrow \gamma\gamma$
none 130–164, 170–180	95	²⁹ CHATRCHYAN	13Y	CMS	$\rho\rho\to~H^0X,~H^0\to~ZZ^*$
none 129–160	95	³⁰ CHATRCHYAN	13Y	CMS	$pp \rightarrow H^0X, H^0 \rightarrow WW^*$
none 111–122, 131–559	95	³¹ AAD		ATLS	$pp \rightarrow H^0 X$ combined
none 133–261	95	³² AAD	12A.I	ATLS	$pp \rightarrow H^0 X, H^0 \rightarrow WW^{(*)}$
= 20 = 02		33 AAD		ATLS	$pp \rightarrow H^0 X, H^0 \rightarrow \tau^+ \tau^-$
none 319-558	95	34 AAD			$pp \rightarrow H^0 X, H^0 \rightarrow ZZ$
HOHE 219-220	93	AAD	14DZ	AILS	$pp \rightarrow 11 A, 11 \rightarrow 22$
		-0.4			

none 300–322, 353–410	95	³⁵ AAD	12CA ATLS	$\rho\rho\to~H^0X,~H^0\to~ZZ$
333-410		³⁶ AAD	12CN ATLS	$pp \rightarrow H^0W/ZX, H^0 \rightarrow b\overline{b}$
		37 AAD	12co ATLS	$pp \rightarrow H^0X, H^0 \rightarrow WW$
104 156	0.5	38 AAD		$pp \rightarrow H^0 X, H^0 \rightarrow ZZ^{(*)}$
none 134–156, 182–233, 256–265,	95	30 AAD	12D ATLS	$pp \rightarrow H^{\circ}X, H^{\circ} \rightarrow ZZ^{(*)}$
268-415 none 113-115,	95	³⁹ AAD	12G ATLS	$pp \rightarrow H^0 X, H^0 \rightarrow \gamma \gamma$
134.5–136	95	AAD	12G ATLS	$pp \rightarrow H^* \lambda, H^* \rightarrow \gamma \gamma$
10 110 100		⁴⁰ AALTONEN	12AK CDF	$p\overline{p} \rightarrow H^0 t\overline{t}X$
		⁴¹ AALTONEN	12AM CDF	$p\overline{p} \rightarrow H^0 X$, inclusive 4ℓ
		⁴² AALTONEN	12AN CDF	$p\overline{p} \rightarrow H^0X, H^0 \rightarrow \gamma\gamma$
		⁴³ AALTONEN	12」CDF	$p\overline{p} \rightarrow H^0 X, H^0 \rightarrow \tau \tau$
		⁴⁴ AALTONEN	12Q CDF	$p\overline{p} \rightarrow H^0 Z X, H^0 \rightarrow b\overline{b}$
none 100-106	95	⁴⁵ AALTONEN	12T TEVA	$p\overline{p} \rightarrow H^0W/ZX, H^0 \rightarrow b\overline{b}$
		⁴⁶ ABAZOV	12K D0	$p\overline{p} \rightarrow H^0W/ZX, H^0 \rightarrow b\overline{b}$
		47,48 CHATRCHYAN	112AY CMS	$pp \rightarrow H^0 W X, H^0 Z X$
		⁴⁹ CHATRCHYAN	112c CMS	$pp \rightarrow H^0 X, H^0 \rightarrow ZZ$
		⁵⁰ CHATRCHYAN		$pp \rightarrow H^0 X, H^0 \rightarrow ZZ^{(*)}$
none 129-270	95	⁵¹ CHATRCHYAN	112E CMS	$pp \rightarrow H^0 X, H^0 \rightarrow WW^{(*)}$
		⁵² CHATRCHYAN	112F CMS	$pp \rightarrow H^0 W X, H^0 Z X$
none 128-132	95	⁵³ CHATRCHYAN	12G CMS	$pp \rightarrow H^0 X, H^0 \rightarrow \gamma \gamma$
none 134–158, 180–305, 340–465	95	⁵⁴ CHATRCHYAN	I12н CMS	$pp \rightarrow H^0 X, H^0 \rightarrow ZZ^{(*)}$
none 270–440	95	⁵⁵ CHATRCHYAN	l 12ı CMS	$pp \rightarrow H^0 X, H^0 \rightarrow ZZ$
		⁵⁶ CHATRCHYAN	I 12K CMS	$pp \rightarrow H^0X, H^0 \rightarrow \tau^+\tau^-$
		⁵⁷ ABAZOV	11G D0	$p\overline{p} \rightarrow H^0 X, H^0 \rightarrow WW^{(*)}$
		⁵⁸ CHATRCHYAN		$pp \rightarrow H^0X, H^0 \rightarrow WW$
none 162–166	95	⁵⁹ AALTONEN	10F TEVA	$p\overline{p} \rightarrow H^0X, H^0 \rightarrow WW^{(*)}$
110110 102 100	30	60 AALTONEN	10M TEVA	$p\overline{p} \rightarrow ggX \rightarrow H^0X, H^0 \rightarrow$
		70121011211	10.00 12.07	WW(*)
		⁶¹ AALTONEN	09A CDF	$p\overline{p} \rightarrow H^0X, H^0 \rightarrow WW^{(*)}$
		⁶² ABAZOV	09U D0	$H^0 ightarrow \tau^+ \tau^-$
		⁶³ ABAZOV	06 D0	$p\overline{p} \rightarrow H^0 X, H^0 \rightarrow W W^*$
		⁶⁴ ABAZOV	060 D0	$p\overline{p} \rightarrow H^0WX, H^0 \rightarrow WW^*$
				* *

 $^{^1}$ AALTONEN 13L combine all CDF searches with 9.45–10.0 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which corresponds to (0.45–4.8) times the expected Standard Model cross section is given for $m_{H^0}=90$ –200 GeV at 95 %CL. An excess of events over background is observed with a local significance of 2.0 σ at $m_{H^0}=125$ GeV. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 124 and 203 GeV are excluded at 95% CL.

values between 124 and 203 GeV are excluded at 95% CL. 2 AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations. A limit on cross section times branching ratio which corresponds to (0.37–3.1) times the expected Standard Model cross section is given for $m_{H^0}=90$ –200 GeV at 95% CL. An excess of events over background is observed with a local significance of 3.0 σ at $m_{H^0}=125$ GeV. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 121 and 225 GeV are excluded at 95% CL.

- 3 ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$ of $p \overline{p}$ collisions at $E_{\sf cm} =$ $1.96\ \text{TeV}$. A limit on cross section times branching ratio which corresponds to (0.66-3.1)times the expected Standard Model cross section is given in the range $m_{H^0}=90$ –200 GeV at 95% CL. An excess of events over background is observed with a local significance of 1.7σ at $m_{H0}=125$ GeV. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0}
- values between 125 and 218 GeV are excluded at 95% CL. 4 CHATRCHYAN 13Q search for H^0 production in the decays $H\to~W^+W^-\to~\ell\nu\ell\nu$, $\ell\nu qq$ and $H\to ZZ\to 4\ell,\,\ell\ell au au,\,\ell\ell
 u
 u$, and $\ell\ell qq$ in up to 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 5.3 fb⁻¹ at $E_{\rm cm}=8$ TeV in the range $m_{H^0}=145-1000$ GeV.
- 5 CHATRCHYAN 12N search for H^{0} production in the decays $\mathit{H}
 ightarrow ~\gamma \gamma$, $\mathit{ZZ}^{*}
 ightarrow ~4\ell$, $WW^* \rightarrow \ell \nu \ell \nu$, $\tau \tau$, and $b \overline{b}$ in 4.9–5.1 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 5.1–5.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The expected exclusion region for no signal is 110–145 GeV at 99.9% CL. See also CHATRCHYAN 13Y. 6 Search for $e^+e^- \to H^0Z$ at $E_{\rm cm} \le 209$ GeV in the final states $H^0 \to b\overline{b}$ with $Z \to \ell\overline{\ell}$, $\nu\overline{\nu}$, $q\overline{q}$, $\tau^+\tau^-$ and $H^0 \to \tau^+\tau^-$ with $Z \to q\overline{q}$.

⁷ Combination of the results of all LEP experiments.

- 8 A 3σ excess of candidate events compatible with m_{H^0} near 114 GeV is observed in the
- combined channels $q\overline{q}q\overline{q},\ q\overline{q}\ell\overline{\ell},\ q\overline{q}\tau^+\tau^-.$ 9 AAD 15G search for WH^0 and ZH^0 production followed by $H^0\to b\overline{b}$ in 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. A limit on the cross section times branching ratio which corresponds to (0.8–2.6) times the expected Standard Model cross section is given for $m_{H^0}=110$ –140 GeV at 95% CL.
- 10 AAD 14AS search for $H^0
 ightarrow \ \mu^+ \, \mu^-$ in 4.5 fb $^{-1}$ of $p \, p$ collisions at $E_{
 m cm} = 7$ TeV and $20.3~{\rm fb^{-1}}$ at $E_{\rm cm}=8~{\rm TeV}$. A limit on the cross section times branching ratio which corresponds to (6.5–16.8) times the expected Standard Model cross section is given for $m_{H^0} = 120 \text{--} 150 \text{ GeV at } 95\% \text{ CL}.$
- 11 AAD 14J search for $H^0 o Z\gamma o \ell\ell\gamma$ in 4.5 fb $^{-1}$ of pp collisions at $E_{cm}=$ 7 TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. A limit on cross section times branching ratio which corresponds to (4–18) times the expected Standard Model cross section is given for m_{H^0} = 120-150 GeV at 95% CL.
- 12 CHATRCHYAN 14AA search for H^0 production in the decay mode $H^0
 ightarrow ZZ^{(*)}
 ightarrow$ 4ℓ in 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The expected exclusion region for no signal is 115–740 GeV at the 95% CL. See their Fig. 18 for cross section limits for $m_{H^0}=110$ –1000 GeV.
- 13 CHATRCHYAN 14AI search for WH^0 and ZH^0 production followed by $H^0 o b\overline{b}$ in up to $5.1~{\rm fb^{-1}}$ of pp collisions at $E_{\rm cm}=7~{\rm TeV}$ and up to $18.9~{\rm fb^{-1}}$ at $E_{\rm cm}=8~{\rm TeV}$. A limit on the cross section times branching ratio which corresponds to (1–3) times the expected Standard Model cross section is given for $m_{\mu0}=110$ –135 GeV at 95% CL.
- 14 CHATRCHYAN 14G search for H^0 production in the decay mode $H^0
 ightarrow ~W \, W^{(*)}
 ightarrow$ $\ell\nu\ell\nu$ in 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.4 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The expected exclusion region for no signal is 115–600 GeV at the 95% CL. See their Fig. 21 (left) for cross section limits for $m_{H^0}=110$ –600 GeV.
- ¹⁵ AALTONEN 13B search for associated H^0Z production in the final state $H^0 o b\overline{b}$, $Z \to \nu \overline{\nu}$, and $H^0 W$ production in $H^0 \to b \overline{b}$, $W \to \ell \nu$ (ℓ not identified) with an improved b identification algorithm in 9.45 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which corresponds to (0.72-11.8) times the expected Standard Model cross section is given for $m_{H^0}=$ 90–150 GeV at 95%CL. The limit for $m_{H^0}=125~{\rm GeV}$ is 3.06, where 3.33 is expected for no signal.

- 16 AALTONEN 13C search for associated H^0W and H^0Z as well as vector-boson fusion $H^0\,q\,\overline{q}'$ production in the final state $H^0\to b\,\overline{b},\,W/Z\to q\,\overline{q}$ with 9.45 fb $^{-1}$ of $p\,\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which is (7.0–64.6) times larger than the expected Standard Model cross section is given in the range $m_{H^0}=100$ –150 GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 9.0, where 11.0 is expected for no signal.
- 17 AALTONEN 13K search for H^0 production (with a possible additional W or Z) in the final state $H^0\to WW^{(*)}\to \ell\nu\ell\nu$ in 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which corresponds to (0.49–14.1) times the expected Standard Model cross section is given in the range $m_{H^0}=110$ –200 GeV at 95% CL. The limit at $m_{H^0}=125$ GeV is 3.26, where 3.25 is expected for no signal. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 124 and 200 GeV are excluded at 95% CL.
- 18 ABAZOV 13E search for H^0 production in four-lepton final states from $H^0 \to ZZ^{(*)}$ and H^0Z in 9.6–9.8 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which corresponds to (8.6–78.9) times the expected Standard Model cross section is given in the range $m_{H^0}=115$ –200 GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 42.3, where 42.8 is expected for no signal.
- 19 ABAZOV 13F search for H^0 production in final states $e\,\tau jj$ and $\mu\tau\,jj$ in 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The search is sensitive to $H\to~\tau\tau$ and $H\to~W\,W^{(*)}.$ A limit on cross section times branching ratio which corresponds to (9.4–17.9) times the expected Standard Model cross section is given in the range $m_{H^0}=105$ –150 GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 11.3, where 9.0 is expected for no signal.
- ²⁰ ABAZOV 13G search for H^0 production in final states $H^0 \to WW^{(*)} \to \ell^+ \nu \ell^- \nu$ in 9.7 fb⁻¹ of $p \overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV and give a limit on cross section times branching ratio for $m_{H^0}=100$ –150 GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 4.1, where 3.4 is expected for no signal. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 125 and 218 GeV are excluded at 95% CL.
- values between 125 and 218 GeV are excluded at 95% CL. 21 ABAZOV 13H search for H^0 production with the decay $H^0 \to \gamma \gamma$ in 9.6 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which corresponds to (8.3–25.4) times the expected Standard Model cross section is given in the range $m_{H^0}=100$ –150 GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 12.8, where 8.7 is expected for no signal.
- ²² ABAZOV 13I search for H^0 production in the final state with one lepton and two or more jets plus missing E_T with b identification in 9.7 fb $^{-1}$ of $p\bar{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The search is mainly sensitive to H^0 $W \to b\bar{b}\ell\nu$, $H^0 \to WW^{(*)} \to \ell\nu q\bar{q}$, and H^0 $V \to VWW^{(*)} \to \ell\nu q\bar{q}q\bar{q}$ (V=W,Z). A limit on cross section times branching ratio which corresponds to (1.3–11.4) times the expected Standard Model cross section is given in the range $m_{H^0}=90$ –200 GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 5.8, where 4.7 is expected for no signal. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 150 and 188 GeV are excluded at 95% CL.
- values between 150 and 188 GeV are excluded at 95% CL. 23 ABAZOV 13J search for H^0 production in the final states $e\,e\,\mu$, $e\,\mu\,\mu$, $\mu\,\tau\,\tau$, and $e^\pm\,\mu^\pm$ in 8.6–9.7 fb $^{-1}$ of $p\,\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The search is sensitive to $W\,H^0$, $Z\,H^0$ and gluon fusion production with $H^0\to W\,W^{(*)}$, $Z\,Z^{(*)}$, decaying to leptonic final states, and to $W\,H^0$, $Z\,H^0$ production with $H^0\to \tau^+\tau^-$. A limit on cross section times branching ratio which corresponds to (4.4–12.7) times the expected Standard Model cross section is given in the range $m_{H^0}=100$ –200 GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 8.4, where 6.3 is expected for no signal.

- 24 ABAZOV 13K search for associated $H^0\,Z$ production in the final states $\ell\ell\,b\,b$ with b identification in 9.7 fb $^{-1}$ of $p\,\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which corresponds to (1.8–53) times the expected Standard Model cross section is given for $m_{H^0}=90$ –150 GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 7.1, where 5.1 is expected for no signal.
- 25 CHATRCHYAN 13AL search for $H^0 \to \tau^+ \tau^-$, $WW^{(*)}$, and $ZZ^{(*)}$ in 5.1 fb $^{-1}$ and 5.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ and 8 TeV. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 110 and 600 GeV are excluded at 99% CL.
- 26 CHATRCHYAN 13BK search for $H^0\to Z\gamma\to\ell\ell\gamma$ in $5.0~{\rm fb}^{-1}$ of pp collisions at $E_{\rm cm}=7~{\rm TeV}$ and $19.6~{\rm fb}^{-1}$ at $E_{\rm cm}=8~{\rm TeV}$. A limit on cross section times branching ratio which corresponds to (4–25) times the expected Standard Model cross section is given in the range $m_{H^0}=120{-}160~{\rm GeV}$ at 95% CL. The limit for $m_{H^0}=125~{\rm GeV}$ is 9.5, where 10 is expected for no signal.
- 27 CHATRCHYAN 13X search for H^0 $t\, \overline{t}$ production followed by $H^0 \to b\, \overline{b}$, one top decaying to $\ell\nu$ and the other to either $\ell\nu$ or $q\, \overline{q}$ in 5.0 fb $^{-1}$ and 5.1 fb $^{-1}$ of $p\, p$ collisions at $E_{\rm cm}=7$ and 8 TeV. A limit on cross section times branching ratio which corresponds to (4.0–8.6) times the expected Standard Model cross section is given for $m_{H^0}=110$ –140 GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 5.8, where 5.2 is expected for no signal.
- 28 CHATRCHYAN 13Y search for H^0 production in the decay $H\to \gamma\gamma$ in 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The expected exclusion region for no signal is 110–144 GeV at 95% CL.
- 29 CHATRCHYAN 13Y search for H^0 production in the decay $H\to ZZ^*\to 4\ell$ in 5.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The expected exclusion region for no signal is 120–180 GeV at 95% CL.
- 30 CHATRCHYAN 13Y search for H^0 production in the decay $H\to WW^*\to \ell\nu\ell\nu$ in 4.9 ${\rm fb}^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.3 ${\rm fb}^{-1}$ at $E_{\rm cm}=8$ TeV. The expected exclusion region for no signal is 122–160 GeV at 95% CL.
- 31 AAD 12AI search for H^0 production in pp collisions for the final states $H^0\to ZZ^{(*)},$ $\gamma\gamma,~WW^{(*)},~b\overline{b},~\tau\tau$ with 4.6–4.8 fb $^{-1}$ at $E_{\rm cm}=7$ TeV, and $H^0\to ZZ^{(*)}\to 4\ell,$ $\gamma\gamma,~WW^{(*)}\to e\nu\mu\nu$ with 5.8–5.9 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The 99% CL excluded range is 113–114, 117–121, and 132–527 GeV. An excess of events over background with a local significance of 5.9 σ is observed at $m_{H^0}=126$ GeV.
- 32 AAD 12AJ search for H^0 production in the decay $H^0 \to WW^{(*)} \to \ell\nu\ell\nu$ with 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 7 TeV. A limit on cross section times branching ratio which corresponds to (0.2–10) times the expected Standard Model cross section is given for $m_{H^0}=$ 110–600 GeV at 95% CL.
- ³³AAD 12BU search for H^0 production in the decay $H \to \tau^+ \tau^-$ with 4.7 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. A limit on cross section times branching ratio which is (2.9–11.7) times larger than the expected Standard Model cross section is given for $m_{H^0}=100$ –150 GeV at 95% CL.
- 34 AAD 12BZ search for H^0 production in the decay $H\to ZZ\to \ell^+\ell^-\nu\overline{\nu}$ with 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. A limit on cross section times branching ratio which corresponds to (0.2–4) times the expected Standard Model cross section is given for $m_{H^0}=200$ –600 GeV at 95% CL.
- 35 AAD 12 CA search for H^0 production in the decay $H\to ZZ\to \ell^+\ell^-q\overline{q}$ with 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. A limit on cross section times branching ratio which corresponds to (0.7–9) times the expected Standard Model cross section is given for $m_{H^0}=200$ –600 GeV at 95% CL.

- 36 AAD 12CN search for associated ^{0}W and ^{0}Z production in the channels $W \to \ell \nu$, $Z \to \ell^+ \ell^-$, $\nu \overline{\nu}$, and $H^0 \to b \overline{b}$, with 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. A limit on cross section times branching ratio which is (2.5–5.5) times larger than the expected Standard Model cross section is given for $m_{H^0}=110$ –130 GeV at 95% CL.
- 37 AAD 12CO search for H^0 production in the decay $H \to WW \to \ell\nu\,q\overline{q}$ with 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. A limit on cross section times branching ratio which is (1.9–10) times larger than the expected Standard Model cross section is given for $m_{H^0}=300$ –600 GeV at 95% CL.
- ³⁸ AAD 12D search for H^0 production with $H \to ZZ^{(*)} \to 4\ell$ in 4.8 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV in the mass range $m_{H^0}=110$ –600 GeV. An excess of events over background with a local significance of 2.1 σ is observed at 125 GeV.
- ³⁹ AAD 12G search for H^0 production with $H \to \gamma \gamma$ in 4.9 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV in the mass range $m_{H^0}=110$ –150 GeV. An excess of events over background with a local significance of 2.8 σ is observed at 126.5 GeV.
- 40 AALTONEN 12AK search for associated $H^0\,t\,\overline{t}$ production in the decay chain $t\,\overline{t}\to W\,W\,b\,b\to\ell\nu\,q\,q\,b\,b$ with 9.45 fb $^{-1}$ of $p\,\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which is (10–40) times larger than the expected Standard Model cross section is given for $m_{H^0}=100$ –150 GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 20.5, where 12.6 is expected.
- ⁴¹ AALTONEN 12AM search for H^0 production in inclusive four-lepton final states coming from $H^0 \to ZZ$, $H^0Z \to WW^{(*)}\ell\ell$, or $H^0Z \to \tau\tau\ell\ell$, with 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which is (7.2–42.4) times larger than the expected Standard Model cross section is given for $m_{H^0}=120$ –300 GeV at 95% CL. The best limit is for $m_{H^0}=200$ GeV.
- ⁴² AALTONEN 12AN search for H^0 production in the decay $H^0 \to \gamma \gamma$ with 10 fb $^{-1}$ of $p \overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which is (7.7–21.3) times larger than the expected Standard Model cross section is given for $m_{H^0}=100$ –150 GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 17.0, where 9.9 is expected.
- 43 AALTONEN 12J search for H^0 production in the decay $H^0 \to \tau^+ \tau^-$ (one leptonic, the other hadronic) with 6.0 fb $^{-1}$ of $p \overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which is (14.6–70.2) times larger than the expected Standard Model cross section is given for $m_{H^0}=100$ –150 GeV at 95% CL. The best limit is for $m_{H^0}=120$ GeV.
- ⁴⁴ AALTONEN 12Q search for associated H^0 Z production in the final state $H^0 \to b \, \overline{b}$, $Z \to \ell^+ \ell^-$ with 9.45 fb⁻¹ of $p \, \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (1.0–37.5) times the expected Standard Model cross section is given for $m_{H^0} = 90$ –150 GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 7.1, where 3.9 is expected. A broad excess of events for $m_{H^0} > 110$ GeV is observed, with a local significance of 2.4 σ at $m_{H^0} = 135$ GeV.
- ⁴⁵ AALTONEN 12T combine AALTONEN 12Q, AALTONEN 12R, AALTONEN 12S, ABAZOV 12O, ABAZOV 12P, and ABAZOV 12K. An excess of events over background is observed which is most significant in the region $m_{H^0}=120$ –135 GeV, with a local significance of up to 3.3 σ . The local significance at $m_{H^0}=125$ GeV is 2.8 σ , which corresponds to $(\sigma(H^0W)+\sigma(H^0Z))$ B $(H^0\to b\overline{b})=(0.23^{+0.09}_{-0.08})$ pb, compared to the Standard Model expectation at $m_{H^0}=125$ GeV of 0.12 \pm 0.01 pb.
- ⁴⁶ ABAZOV 12K search for associated H^0Z production in the final state $H^0\to b\overline{b}, Z\to \nu\overline{\nu}$, and H^0W production with $W\to \ell\nu$ (ℓ not identified) with 9.5 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A limit on cross section times branching ratio which is (1.9–16.8) times larger than the expected Standard Model cross section is given for $m_{H^0}=100-150$ GeV at 95% CL. The limit for $m_{H^0}=125$ GeV is 4.3, where 3.9 is expected.

- ⁴⁷ CHATRCHYAN 12AY search for associated H^0W and H^0Z production in the channels $W \to \ell \nu$, $Z \to \ell^+ \ell^-$, and $H^0 \to \tau \tau$, $WW^{(*)}$, with 5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. A limit on cross section times branching ratio which is (3.1–9.1) times larger than the expected Standard Model cross section is given for $m_{H^0}=110$ –200 GeV at 95% CL.
- 48 CHATRCHYAN 12AY combine CHATRCHYAN 12F and CHATRCHYAN 12AO in addition and give a limit on cross section times branching ratio which is (2.1–3.7) times larger than the expected Standard Model cross section for $m_{\slashed{H^0}}=110$ –170 GeV at 95% CL. The limit for $m_{\slashed{H^0}}=125$ GeV is 3.3.
- ⁴⁹ CHATRCHYAN 12C search for H^0 production with $H \to ZZ \to \ell^+\ell^-\tau^+\tau^-$ in 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. A limit on cross section times branching ratio which is (4–12) times larger than the expected Standard Model cross section is given for $m_{H^0}=190$ –600 GeV at 95% CL. The best limit is at $m_{H^0}=200$ GeV.
- ⁵⁰ CHATRCHYAN 12D search for H^0 production with $H \to ZZ^{(*)} \to \ell^+\ell^-q\overline{q}$ in 4.6 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. A limit on cross section times branching ratio which corresponds to (1–22) times the expected Standard Model cross section is given for $m_{H^0}=130$ –164 GeV, 200–600 GeV at 95% CL. The best limit is at $m_{H^0}=230$ GeV. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values in the ranges $m_{H^0}=154$ –161 GeV and 200–470 GeV are excluded at 95% CL.
- ⁵¹ CHATRCHYAN 12E search for H^0 production with $H \to WW^{(*)} \to \ell^+ \nu \ell^- \overline{\nu}$ in 4.6 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV in the mass range $m_{H^0}=110$ –600 GeV.
- 52 CHATRCHYAN 12F search for associated $H^0\,W$ and $H^0\,Z$ production followed by $W\to\ell\nu,\,Z\to\ell^+\ell^-,\,\nu\overline{\nu},$ and $H^0\to b\overline{b},$ in 4.7 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=7$ TeV. A limit on cross section times branching ratio which is (3.1–9.0) times larger than the expected Standard Model cross section is given for $m_{H^0}=110$ –135 GeV at 95% CL. The best limit is at $m_{H^0}=110$ GeV.
- ⁵³ CHATRCHYAN 12G search for H^0 production with $H \to \gamma \gamma$ in 4.8 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV in the mass range $m_{H^0}=110$ –150 GeV. An excess of events over background with a local significance of 3.1 σ is observed at 124 GeV.
- 54 CHATRCHYAN 12H search for H^0 production with $H\to ZZ^{(*)}\to 4\ell$ in 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV in the mass range $m_{H^0}=110$ –600 GeV. Excesses of events over background are observed around 119, 126 and 320 GeV. The region $m_{H^0}=114.4$ –134 GeV remains consistent with the expectation for the production of a SM-like Higgs boson.
- ⁵⁵ CHATRCHYAN 12I search for H^0 production with $H \to ZZ \to \ell^+\ell^-\nu\overline{\nu}$ in 4.6 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV in the mass range $m_{H^0}=250$ –600 GeV.
- ⁵⁶ CHATRCHYAN 12K search for H^0 production in the decay $H \to \tau^+ \tau^-$ with 4.6 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. A limit on cross section times branching ratio which is (3.2–7.0) times larger than the expected Standard Model cross section is given for $m_{H^0}=110$ –145 GeV at 95% CL.
- = 110–145 GeV at 95% CL. 57 ABAZOV 11G search for H^0 production in 5.4 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV in the decay mode $H^0\to WW^{(*)}\to \ell\nu q\overline{q}'$ (and processes with similar final states). A limit on cross section times branching ratio which is (3.9–37) times larger than the expected Standard Model cross section is given for $m_{H^0}=115$ –200 GeV at 95% CL. The best limit is at $m_{H^0}=160$ GeV.
- ⁵⁸ CHATRCHYAN 11J search for H^0 production with $H \to W^+W^- \to \ell\ell\nu\nu$ in 36 pb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. See their Fig. 6 for a limit on cross section times branching ratio for $m_{H^0}=120$ –600 GeV at 95% CL. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 144 and 207 GeV are excluded at 95% CL.

- ⁵⁹ AALTONEN 10F combine searches for H^0 decaying to W^+W^- in $p\bar{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV with 4.8 fb⁻¹ (CDF) and 5.4 fb⁻¹ (DØ).
- ⁶⁰ AALTONEN 10M combine searches for H^0 decaying to W^+W^- in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with 4.8 fb $^{-1}$ (CDF) and 5.4 fb $^{-1}$ (DØ) and derive limits $\sigma(p\overline{p}\to H^0)$ · B($H^0\to W^+W^-$) < (1.75–0.38) pb for $m_H=120$ –165 GeV, where H^0 is produced in gg fusion. In the Standard Model with an additional generation of heavy quarks, m_{H^0} between 131 and 204 GeV is excluded at 95% CL.
- ⁶¹ AALTONEN 09A search for H^0 production in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV in the decay mode $H^0\to WW^{(*)}\to \ell^+\ell^-\nu\overline{\nu}$. A limit on $\sigma(H^0)\to B(H^0\to WW^{(*)})$ between 0.7 and 2.5 pb (95% CL) is given for $m_{H^0}=110$ –200 GeV, which is 1.7–45 times larger than the expected Standard Model cross section. The best limit is obtained for $m_{H^0}=160$ GeV.
- 62 ABAZOV 09U search for $H^0 \to \tau^+ \tau^-$ with $\tau \to$ hadrons in 1 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The production mechanisms include associated $W/Z+H^0$ production, weak boson fusion, and gluon fusion. A limit (95% CL) is given for $m_{H^0}=105$ –145 GeV, which is 20–82 times larger than the expected Standard Model cross section. The limit for $m_{H^0}=115$ GeV is 29 times larger than the expected Standard Model cross section.
- 63 ABAZOV 06 search for Higgs boson production in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with the decay chain $H^0\to WW^*\to \ell^\pm\nu\ell'^\mp\overline{\nu}$. A limit $\sigma(H^0)\cdot {\rm B}(H^0\to WW^*)<(5.6-3.2)$ pb (95 %CL) is given for $m_{H^0}=120-200$ GeV, which far exceeds the expected Standard Model cross section.
- 64 ABAZOV 060 search for associated H^0 W production in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with the decay $H^0\to WW^*$, in the final states $\ell^\pm\ell'^\mp\nu\nu'$ X where $\ell=e,~\mu$. A limit $\sigma(H^0W)\cdot B(H^0\to WW^*)<(3.2–2.8)$ pb (95 %CL) is given for $m_{H^0}=115–175$ GeV, which far exceeds the expected Standard Model cross section.

Indirect Mass Limits for H⁰ from Electroweak Analysis

The mass limits shown below apply to a Higgs boson H^0 with Standard Model couplings whose mass is a priori unknown.

For limits obtained before the direct measurement of the top quark mass, see the 1996 (Physical Review **D54** 1 (1996)) Edition of this Review. Other studies based on data available prior to 1996 can be found in the 1998 Edition (The European Physical Journal **C3** 1 (1998)) of this Review.

VALUE (GeV)	DOCUMENT ID		TECN
94 + 25	¹ BAAK	12A	RVUE

• • • We do not use the following data for averages, fits, limits, etc. • •

91^{+30}_{-23}	² BAAK	12	RVUE
$91 + 31 \\ -24$	³ ERLER	10A	RVUE
129^{+74}_{-49}	⁴ LEP-SLC	06	RVUE

- 1 BAAK 12A make Standard Model fits to Z and neutral current parameters, m_t , m_W , and Γ_W measurements available in 2012 (using also preliminary data). The quoted result is obtained from a fit that does not include the measured mass value of the signal observed at the LHC and also no limits from direct Higgs searches.
- 2 BAAK 12 make Standard Model fits to Z and neutral current parameters, $m_t,\,m_W$, and Γ_W measurements available in 2010 (using also preliminary data). The quoted result is obtained from a fit that does not include the limit from the direct Higgs searches. The result including direct search data from LEP2, the Tevatron and the LHC is $120 {+} 12 \, {\rm GeV}$.
- 3 ERLER 10A makes Standard Model fits to Z and neutral current parameters, $m_t,\,m_W$ measurements available in 2009 (using also preliminary data). The quoted result is obtained from a fit that does not include the limits from the direct Higgs searches. With direct search data from LEP2 and Tevatron added to the fit, the 90% CL (99% CL) interval is 115–148 (114–197) GeV.
- ⁴ LEP-SLC 06 make Standard Model fits to Z parameters from LEP/SLC and m_t , m_W , and Γ_W measurements available in 2005 with $\Delta\alpha_{\rm had}^{(5)}(m_Z)=0.02758\pm0.00035$. The 95% CL limit is 285 GeV.

SEARCHES FOR NEUTRAL HIGGS BOSONS REFERENCES

AAD	15G	JHEP 1501 069	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14AP	PRL 113 171801	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14AS	PL B738 68	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14AW	JHEP 1411 056	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14BA	JHEP 1411 088	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14J	PL B732 8	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14M	PR D89 032002	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	140	PRL 112 201802	G. Aad <i>et al.</i>	(ATLAS Collab.)
CHATRCHYAN	14AA	PR D89 092007	S. Chatrchyan et al.	` (CMS Collab.)
CHATRCHYAN	14AI	PR D89 012003	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	14B	EPJ C74 2980	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	14G	JHEP 1401 096	S. Chatrchyan et al.	(CMS Collab.)
KHACHATRY	14M	JHEP 1410 160	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY	14P	EPJ C74 3076	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY	14Q	PR D90 112013	V. Khachatryan et al.	(CMS Collab.)
AAD	13AG	PL B721 32	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	13AT	NJP 15 043009	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	130	JHEP 1302 095	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAIJ	13T	JHEP 1305 132	R. Aaij <i>et al.</i>	`(LHCb Collab.)
AALTONEN	13B	PR D87 052008	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	13C	JHEP 1302 004	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	13K	PR D88 052012	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	13L	PR D88 052013	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	13M	PR D88 052014	T. Aaltonen <i>et al.</i>	(CDF and D0 Collab.)
AALTONEN	13P	PRL 110 121801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	13E	PR D88 032008	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	13F	PR D88 052005	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	13G	PR D88 052006	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	13H	PR D88 052007	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	13I	PR D88 052008	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	13J	PR D88 052009	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	13K	PR D88 052010	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	13L	PR D88 052011	V.M. Abazov et al.	(D0 Collab.)
CARENA	13	EPJ C73 2552	M. Carena <i>et al.</i>	
CHATRCHYAN	13AG	PL B722 207	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	13AL	PL B725 36	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN			S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	13BK	PL B726 587	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	13Q	EPJ C73 2469	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN		JHEP 1305 145	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN		JHEP 1306 081	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
LEES	13C	PR D87 031102	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13L	PR D88 031701	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13R	PR D88 071102	J.P. Lees <i>et al.</i>	(BABAR Collab.)
AAD	12AI	PL B716 1	G. Aad <i>et al.</i>	(ATLAS Collab.)

A A D	1041	DI D716 60		(ATLAC C)
AAD		PL B716 62	G. Aad et al.	(ATLAS Collab.)
AAD		PRL 108 251801	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12BU	JHEP 1209 070	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12BZ	PL B717 29	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12CA	PL B717 70	G. Aad et al.	(ATLAS Collab.)
AAD	12CN	PL B718 369	G. Aad et al.	(ATLAS Collab.)
AAD		PL B718 391	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12D	PL B710 383	G. Aad et al.	(ATLAS Collab.)
AAD	12G		G. Aad et al.	\ /
		PRL 108 111803		(ATLAS Collab.)
AAD	12N	EPJ C72 2157	G. Aad et al.	(ATLAS Collab.)
AALTONEN		PR D85 092001	T. Aaltonen et al.	(CDF Collab.)
AALTONEN		PRL 109 181802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12AM	PR D86 072012	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12AN	PL B717 173	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12AQ	PR D86 091101	T. Aaltonen <i>et al.</i>	(CDF and D0 Collabs.)
AALTONEN	12J	PRL 108 181804	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	12Q	PRL 109 111803	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	12R	PRL 109 111804	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12S	PRL 109 111805	T. Aaltonen <i>et al.</i>	(CDF Collab.)
	123 12T			(CDF and D0 Collab.)
AALTONEN		PRL 109 071804	T. Aaltonen <i>et al.</i>	
AALTONEN	12U	PR D85 012007	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	12X	PR D85 032005	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	12G	PL B710 569	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	12K	PL B716 285	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	120	PRL 109 121803	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	12P	PRL 109 121804	V.M. Abazov et al.	(D0 Collab.)
BAAK	12	EPJ C72 2003	M. Baak et al.	(Gfitter Group)
BAAK	12A	EPJ C72 2205	M. Baak <i>et al.</i>	(Gfitter Group)
CHATRCHYAN	12AO	JHEP 1209 111	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	12AY	JHEP 1211 088	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN		JHEP 1203 081	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN		JHEP 1204 036	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN		PL B710 91	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN		PL B710 284	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN		PL B710 403	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN		PRL 108 111804	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN		JHEP 1203 040	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN		PL B713 68	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN		PL B716 30	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN		PRL 109 121801	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AALTONEN	11P	PRL 107 031801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	11G	PRL 106 171802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11G 11K	PL B698 97	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	11W		V.M. Abazov et al.	(D0 Collab.)
ABOUZAID	11VV 11A	PRL 107 121801 PRL 107 201803	E. Abouzaid <i>et al.</i>	,
				(KTeV Collab.)
CHATRCHYAN		PL B699 25	S. Chatrchyan et al.	(CMS Collab.)
DEL-AMO-SA	-	PRL 107 021804	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
LEES	11H	PRL 107 221803	J.P. Lees <i>et al.</i>	(BABAR Collab.)
AALTONEN	10F	PRL 104 061802	T. Aaltonen <i>et al.</i>	(CDF and D0 Collab.)
-	10M		T. Aaltonen <i>et al.</i>	(CDF and D0 Collab.)
ABBIENDI	10	PL B682 381	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ANDREAS	10	JHEP 1008 003	S. Andreas <i>et al.</i>	(DESY)
ERLER	10A	PR D81 051301	J. Erler	(UNAM)
HYUN	10	PRL 105 091801	H.J. Hyun <i>et al.</i>	(BELLE Collab.)
SCHAEL	10	JHEP 1005 049	S. Schael <i>et al.</i>	(ALEPH Collab.)
AALTONEN	09A	PRL 102 021802	T. Aaltonen et al.	` (CDF Collab.)
AALTONEN	09AB	PRL 103 061803	T. Aaltonen et al.	(CDF Collab.)
AALTONEN		PRL 103 201801	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	09U	PRL 102 251801	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	09V	PRL 103 061801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
AUBERT	09P	PRL 103 181801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09Z	PRL 103 081803	B. Aubert <i>et al.</i>	(BABAR Collab.)
TUNG	09	PRL 102 051802	Y.C. Tung et al.	(KEK E391a Collab.)
ABAZOV	08U	PRL 101 051801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABDALLAH	08B	EPJ C54 1	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
Also	000	EPJ C56 165 (errat)	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
LOVE	08	PRL 101 151802	W. Love <i>et al.</i>	(CLEO Collab.)
ABBIENDI	08	EPJ C49 457	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
BESSON	07	PRL 98 052002	D. Besson <i>et al.</i>	(CLEO Collab.)
SCHAEL	07	EPJ C49 439	S. Schael <i>et al.</i>	(ALEPH Collab.)
ABAZOV	06	PRL 96 011801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
NUMLUV	00	1 IVE 30 011001	V.IVI. ADGZOV EL dI.	(DU COllab.)

ABAZOV LEP-SLC SCHAEL ABBIENDI ABDALLAH ACHARD ACOSTA PARK ABBIENDI	06O 06 06B 05A 05D 05 05 05Q 05 04K	PRL 97 151804 PRPL 427 257 EPJ C47 547 EPJ C40 317 EPJ C44 147 PL B609 35 PR D72 072004 PRL 94 021801 PL B597 11	S. Schael <i>et al.</i> G. Abbiendi <i>et al.</i> J. Abdallah <i>et al.</i> P. Achard <i>et al.</i> D. Acosta <i>et al.</i> H.K. Park <i>et al.</i> G. Abbiendi <i>et al.</i>	(D0 Collab.) OPAL, SLD and working groups (LEP Collabs.) (OPAL Collab.) (DELPHI Collab.) (L3 Collab.) (CDF Collab.) (FNAL HyperCP Collab.)
ABBIENDI ABDALLAH ABDALLAH	04M 04 04B	EPJ C37 49 EPJ C32 145 EPJ C32 475	G. Abbiendi <i>et al.</i> J. Abdallah <i>et al.</i> J. Abdallah <i>et al.</i>	(OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.)
ABDALLAH ABDALLAH	04L 04O	EPJ C35 313 EPJ C38 1	J. Abdallah <i>et al.</i> J. Abdallah <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.)
ACHARD ACHARD	04B 04F	PL B583 14 PL B589 89	P. Achard <i>et al.</i> P. Achard <i>et al.</i>	(L3 Collab.) (L3 Collab.)
ABBIENDI	03B	EPJ C26 479	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI	03F	EPJ C27 311	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI ACHARD	03G 03C	EPJ C27 483 PL B568 191	G. Abbiendi <i>et al.</i> P. Achard <i>et al.</i>	(OPAL Collab.) (L3 Collab.)
CARENA	03	EPJ C26 601	M.S. Carena <i>et al.</i>	(L3 Collab.)
HEISTER	03D	PL B565 61	A. Heister <i>et al.</i>	(ALEPH, DELPHI, L3+)
			Higgs Working Group	(**************************************
ABBIENDI	02D	EPJ C23 397	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	02F	PL B544 44	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ACHARD	02C	PL B534 28	P. Achard et al.	(L3 Collab.)
ACHARD	02H	PL B545 30	P. Achard et al.	(L3 Collab.)
AKEROYD	02	PR D66 037702	A.G. Akeroyd <i>et al.</i>	(11.55)
HEISTER	02	PL B526 191	A. Heister <i>et al.</i>	(ALEPH Collab.)
HEISTER	02L	PL B544 16	A. Heister <i>et al.</i> A. Heister <i>et al.</i>	(ALEPH Collab.)
HEISTER ABBIENDI	02M 01E	PL B544 25 EPJ C18 425	G. Abbiendi <i>et al.</i>	(ALEPH Collab.) (OPAL Collab.)
ABREU	01F	PL B507 89	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACHARD	01C	PL B517 319	P. Achard <i>et al.</i>	(L3 Collab.)
AFFOLDER	01H	PR D64 092002	T. Affolder <i>et al.</i>	(CDF Collab.)
BARATE	01C	PL B499 53	R. Barate <i>et al.</i>	(ALEPH Collab.)
ACCIARRI	00M	PL B485 85	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	00R	PL B489 102	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	00S	PL B489 115	M. Acciarri et al.	(L3 Collab.)
BARATE	00L	PL B487 241	R. Barate <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	99E	EPJ C7 407	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	99O	PL B464 311	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBOTT	99B	PRL 82 2244	B. Abbott <i>et al.</i>	(D0 Collab.)
ABREU	99P	PL B458 431	P. Abreu <i>et al.</i>	(DELPHI Collab.)
CARENA	99B	hep-ph/9912223	M.S. Carena <i>et al.</i>	
CERN-TH/9		DDI 00 440	D Abb -++ -+ -/	(D0 C-II-h)
ABBOTT ACKERSTAFF	98 98S	PRL 80 442 EPJ C5 19	B. Abbott <i>et al.</i> K. Ackerstaff <i>et al.</i>	(D0 Collab.) (OPAL Collab.)
ACKERSTAFF	98Y	PL B437 218	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
GONZALEZ-G		PR D57 7045		S.M. Lietti, S.F. Novaes
PDG	98	EPJ C3 1	C. Caso <i>et al.</i>	(PDG Collab.)
KRAWCZYK	97	PR D55 6968	M. Krawczyk, J. Zocho	
ALEXANDER	96H	ZPHY C71 1	G. Alexander <i>et al.</i>	(OPAL Čollab.)
PDG	96	PR D54 1	R. M. Barnett et al.	`(PDG Collab.)
ABREU	95H	ZPHY C67 69	P. Abreu <i>et al.</i>	(DELPHI Collab.)
BALEST	95	PR D51 2053	R. Balest <i>et al.</i>	(CLEO Collab.)
PICH	92	NP B388 31	A. Pich, J. Prades, P.	
ANTREASYAN	90C	PL B251 204	D. Antreasyan et al.	(Crystal Ball Collab.)